Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Error running PE example combining models #11

Closed
cmbiwer opened this issue Dec 14, 2023 · 5 comments
Closed

Error running PE example combining models #11

cmbiwer opened this issue Dec 14, 2023 · 5 comments

Comments

@cmbiwer
Copy link

cmbiwer commented Dec 14, 2023

In this demo: https://pygwb.docs.ligo.org/pygwb/run_pe.html#Combining-models

When I run this cell:

gw_schu = type('gw_schu', (PowerLawModel,SchumannModel), dict(c='c'))
kwargs={"baselines":[HL, HV, LV], "model_name":'PL+Schu', "polarizations":['tensor'],"fref":25}
model = gw_schu(**kwargs)

priors= {'kappa_H': bilby.core.prior.LogUniform(0.01, 10, '$\\kappa_H$'),
            'kappa_L': bilby.core.prior.LogUniform(0.01, 10, '$\\kappa_L$'),
            'kappa_V': bilby.core.prior.LogUniform(0.01, 10, '$\\kappa_V$'),
            'beta_H': bilby.core.prior.Uniform(0.0, 12.0, '$\\beta_H$'),
            'beta_L': bilby.core.prior.Uniform(1.0, 10.0, '$\\beta_L$'),
           'beta_V': bilby.core.prior.Uniform(0.0, 7.0, '$\\beta_V$'),
            'omega_ref': bilby.core.prior.LogUniform(1e-13, 1e-5, '$\\Omega_{\\rm ref}$'),
             'alpha': bilby.core.prior.Gaussian(0, 3.5, '$\\alpha$')}
hlv_gw_schu=bilby.run_sampler(likelihood=model,priors=priors,sampler='dynesty', npoints=1000, walks=10,npool=10,outdir='./pe/',label= 'hlv_gw_schu', resume=False)

I get an error:

07:51 bilby INFO    : Running for label 'hlv_gw_schu', output will be saved to './pe/'
07:52 bilby INFO    : Analysis priors:
07:52 bilby INFO    : kappa_H=LogUniform(minimum=0.01, maximum=10, name='$\\kappa_H$', latex_label='$\\kappa_H$', unit=None, boundary=None)
07:52 bilby INFO    : kappa_L=LogUniform(minimum=0.01, maximum=10, name='$\\kappa_L$', latex_label='$\\kappa_L$', unit=None, boundary=None)
07:52 bilby INFO    : kappa_V=LogUniform(minimum=0.01, maximum=10, name='$\\kappa_V$', latex_label='$\\kappa_V$', unit=None, boundary=None)
07:52 bilby INFO    : beta_H=Uniform(minimum=0.0, maximum=12.0, name='$\\beta_H$', latex_label='$\\beta_H$', unit=None, boundary=None)
07:52 bilby INFO    : beta_L=Uniform(minimum=1.0, maximum=10.0, name='$\\beta_L$', latex_label='$\\beta_L$', unit=None, boundary=None)
07:52 bilby INFO    : beta_V=Uniform(minimum=0.0, maximum=7.0, name='$\\beta_V$', latex_label='$\\beta_V$', unit=None, boundary=None)
07:52 bilby INFO    : omega_ref=LogUniform(minimum=1e-13, maximum=1e-05, name='$\\Omega_{\\rm ref}$', latex_label='$\\Omega_{\\rm ref}$', unit=None, boundary=None)
07:52 bilby INFO    : alpha=Gaussian(mu=0, sigma=3.5, name='$\\alpha$', latex_label='$\\alpha$', unit=None, boundary=None)
07:52 bilby INFO    : Analysis likelihood class: <class '__main__.gw_schu'>
07:52 bilby INFO    : Analysis likelihood noise evidence: 68225.8137823414
07:52 bilby INFO    : Single likelihood evaluation took 5.967e-04 s
07:52 bilby INFO    : Using sampler Dynesty with kwargs {'nlive': 1000, 'bound': 'live', 'sample': 'act-walk', 'periodic': None, 'reflective': None, 'update_interval': 600, 'first_update': None, 'npdim': None, 'rstate': None, 'queue_size': 10, 'pool': None, 'use_pool': None, 'live_points': None, 'logl_args': None, 'logl_kwargs': None, 'ptform_args': None, 'ptform_kwargs': None, 'gradient': None, 'grad_args': None, 'grad_kwargs': None, 'compute_jac': False, 'enlarge': None, 'bootstrap': None, 'walks': 10, 'facc': 0.2, 'slices': None, 'fmove': 0.9, 'max_move': 100, 'update_func': None, 'ncdim': None, 'blob': False, 'save_history': False, 'history_filename': None, 'maxiter': None, 'maxcall': None, 'dlogz': 0.1, 'logl_max': inf, 'n_effective': None, 'add_live': True, 'print_progress': True, 'print_func': <bound method Dynesty._print_func of <bilby.core.sampler.dynesty.Dynesty object at 0x7fae10514730>>, 'save_bounds': False, 'checkpoint_file': None, 'checkpoint_every': 60, 'resume': False}
07:52 bilby INFO    : Checkpoint every check_point_delta_t = 600s
07:52 bilby INFO    : Using dynesty version 2.1.3
07:52 bilby INFO    : Using the bilby-implemented act-walk sampling tracking the autocorrelation function and thinning by 2 with maximum length 10000
07:52 bilby INFO    : Setting up multiproccesing pool with 10 processes
Traceback (most recent call last):
  File "<string>", line 1, in <module>
  File "/Users/cmbiwer/anaconda3/envs/pygwb/lib/python3.9/multiprocessing/spawn.py", line 116, in spawn_main
    exitcode = _main(fd, parent_sentinel)
  File "/Users/cmbiwer/anaconda3/envs/pygwb/lib/python3.9/multiprocessing/spawn.py", line 126, in _main
    self = reduction.pickle.load(from_parent)
AttributeError: Can't get attribute 'gw_schu' on <module '__main__' (built-in)>
@kevinturbang
Copy link
Collaborator

I ran the code on my end and things seem to work fine for me. It seems like this might be a multiprocessing issues. In the last line of the cell, could you try setting the npool parameter equal to 1, instead of 10 to see if that fixes things? Thank you.

@cmbiwer
Copy link
Author

cmbiwer commented Dec 20, 2023

How do you recommend installing jupyter or whatever app to run the notebook? It seems some of these issues stem from me just installing the latest jupyter off conda.

@a-renzini
Copy link
Owner

How do you recommend installing jupyter or whatever app to run the notebook? It seems some of these issues stem from me just installing the latest jupyter off conda.

Hi @cmbiwer - I've now looked into this, and indeed, the issue arises when using a jupyter notebook whereas it runs fine on jupyter lab. I've reproduced your error by running:

conda create -n pygwb_for_joss python=3.9
git clone git@git.ligo.org:pygwb/pygwb.git
cd pygwb
pip install .
conda install jupyter
pip install ipykernel ipython==8.12.0 jupyter
ipython kernel install --name "pygwb_for_joss" --user

and using the pygwb_for_joss environment. Whereas, if I run using jupyter lab as we usually do, I get the same results as on the tutorial in the docs.

I think this is coming from a known bug/issue with multiprocessing on jupyter, see

I have now fixed the issue by just removing the multiprocessing call in the notebook, npool=10. The example runs fast and doesn't actually need multiprocessing. I don't think it's worth having the example break when using notebooks, but we can add a note about it in the tutorials.

@cmbiwer
Copy link
Author

cmbiwer commented Jan 16, 2024

Thanks for looking into that. That is what I was doing.

but we can add a note about it in the tutorials.

I think that would be helpful and I'd be happy to close the issue and approve the JOSS submission.

@a-renzini
Copy link
Owner

Great - I've added a tip, see https://git.ligo.org/pygwb/pygwb/-/blob/master/tutorials/run_pe.ipynb

All merged.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants