Skip to content

Playing with deep learning models for hyperspectral imagery

License

Notifications You must be signed in to change notification settings

abigailstone/Hyperspectral-Zoo

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Hyperspectral Zoo

PyTorch Lightning Config: Hydra Template

Description

This a testing ground for implementing deep learning models for hyperspectral data.

Datasets

Datasets downloaded from here.

Dataset # Bands Image Size # Classes Sensor (spectral range)
Indian Pines 200 145 x 145 16 AVIRIS ($0.4 - 2.5 * 10^6$ nm)
Salinas 204 512 x 217 16 AVIRIS
Pavia Centre 102 1096 x 1096 10 ROSIS
Pavia University 103 610 x 610 10 ROSIS

Models

  • 1D CNN - Hu et al. "Deep Convolutional Neural Networks for Hyperspectral Image Classification", Journal of Sensors, 2015
  • HSI-CNN - Luo et al. "HSI-CNN: A Novel Convolution Neural Network for Hyperspectral Image", ICALIP 2018

Set-Up

Conda

# clone project
git clone https://github.com/abigailstone/Hyperspectral-Zoo
cd Hyperspectral-Zoo

# create conda environment and install dependencies
conda env create -f environment.yaml -n myenv

# activate conda environment
conda activate myenv

Log in to Weights & Biases from the command line to set up W&B logging.

Training

Train model with default configuration

# train on CPU
python src/train.py

# train using Salinas data 
python src/train.py data=salinas

You can override any parameter from command line like this

python src/train.py trainer.max_epochs=20 data.batch_size=64

See Hydra docs for more info.

About

Playing with deep learning models for hyperspectral imagery

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages