This repository has been archived by the owner on Jan 28, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathMHI-AC-SPI.ino
262 lines (236 loc) · 9.69 KB
/
MHI-AC-SPI.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
// MHI-AC-SPI v1.1 by absalom-muc
// read data via SPI and send via MQTT
#include "esp8266_peri.h"
#include <ESP8266WiFi.h>
#include <PubSubClient.h> // see https://github.com/knolleary/pubsubclient
const char* ssid = "xxx";
const char* password = "xxx";
WiFiClient espClient;
PubSubClient MQTTclient(espClient);
#define SYNC_PIN 4
volatile bool valid_datapacket_received = false;
volatile bool new_datapacket_received = false;
unsigned long last_sync_isrT = 0;
volatile bool sync = false;
volatile bool sync_changed = true;
unsigned long runtimeMillis = 0;
uint8_t rx_payload[19];
#define SIGNBYTE1 0
#define SIGNBYTE2 1
#define DATABYTE0 SIGNBYTE2 + 1
#define DATABYTE1 SIGNBYTE2 + 2
#define DATABYTE2 SIGNBYTE2 + 3
#define DATABYTE3 SIGNBYTE2 + 4
#define DATABYTE6 SIGNBYTE2 + 7
void MQTTreconnect() {
while (!MQTTclient.connected()) { // Loop until we're reconnected
SPI1S |= SPISSRES; //reset SPI
update_sync(0);
Serial.print("Attempting MQTT connection...");
if (MQTTclient.connect ("MHI-AC-SPI", "MHI/connected", 0, true, "0")) {
Serial.println("connected");
MQTTclient.publish("MHI/connected", "1", true);
} else {
Serial.print("failed, rc=");
Serial.print(MQTTclient.state());
Serial.println(" try again in 5 seconds");
// Wait 5 seconds before retrying
delay(5000);
}
}
}
void ICACHE_RAM_ATTR sync_isr() { // Sync pin interrupt on falling edge
SPI1S |= SPISSRES; // SPISSRES=bit31, Reset HSPI slave (SPI_SYNC_RESET )
SPI1S &= ~SPISSRES;
SPI1CMD = SPICMDUSR; // Start HSPI slave with enable user-defined commands
}
void ICACHE_RAM_ATTR _hspi_slave_isr_handler(void *) {
uint32_t istatus = SPIIR;
if(istatus & (1 << SPII1)) { //SPI1 ISR (SPI1 Interrupt)
uint32_t status = SPI1S;
SPI1S &= ~(0x3E0); //disable interrupts
SPI1S |= SPISSRES; //reset
SPI1S &= ~(0x1F); //clear interrupts
SPI1S |= (0x3E0); //enable interrupts
if(status & SPISWBIS) { // was it a SPI_SLV_WR_BUF_INT
uint8_t *p = rx_payload;
uint32_t dword;
new_datapacket_received = 0;
uint16_t sum = 0x6c;
for(int i=0; i<19;i++) {
if (i%4 == 0)
dword = SPI1W(i/4);
if(*p != (uint8_t)dword)
new_datapacket_received = 1;
*p = (uint8_t)dword;
if(i<17)
sum += *p;
p++;
dword = dword>>8;
}
if((rx_payload[0] != 0x80 | rx_payload[1] != 0x04) | (rx_payload[17] != highByte(sum) | rx_payload[18] != lowByte(sum)))
digitalWrite(SYNC_PIN, 0); // for debug only
else
valid_datapacket_received = true;
digitalWrite(LED_BUILTIN, LOW); // for debug only
}
} else if(istatus & (1 << SPII0)) { //SPI0 ISR
SPI0S &= ~(0x3ff);//clear SPI ISR
} else if(istatus & (1 << SPII2)) {} //I2S ISR
}
void update_sync(bool sync_new) {
if(sync_new != sync) {
sync = sync_new;
sync_changed = true;
digitalWrite(SYNC_PIN, sync_new);
}
}
void hspi_slave_begin() {
pinMode(SCK, SPECIAL); // Both inputs in slave mode
pinMode(MOSI, SPECIAL);
// Take care, the register descriptions might be wrong! Couldn't find a ESP8266 SPI register description
SPI1C = 0x0628A000; // SPI_CTRL_REG LSB first, single bit rx_payload mode.
// bit 26 = 1 SPI_WR_BIT_ORDER => sends LSB first
// bit 25 = 1 SPI_RD_BIT_ORDER => sends LSB first
// bit 24 = 0 SPI_FREAD_QIO => no
// bit 23 = 0 SPI_FREAD_DIO => disable
// bit 21 = 1 SPI_WP => output high
// bit 20 = 0 SPI_FREAD_QUAD => disable
// die 8 von 0x0628A000 zeigt auf reserved bits
// das oberste bit von A in 0x0628A000 zeigt auf reserved bits
// bit 14 = 0 SPI_FREAD_DUAL => disable
// bit 13 = 1 SPI_FASTRD_MODE => enable
SPI1S = SPISE | SPISBE | SPISCD | 0x3E0;// SPI_SLAVE_REG, set slave mode, WR/RD BUF enable, CMD define, enable interrupts
// bit 30 = 1 (SPISE) SPI_SLAVE_MODE => slave mode
// bit 29 = 1 (SPISBE) SPI_SLV_WR_RD_BUF_EN => enables write and read buffer commands in slave mode
// bit 27 = 1 (SPISCD) SPI_SLV_CMD_DEFINE => slave mode commands are defined in SPI_SLAVE3
SPI1U=0x00000040; // evtl. SPI_CK_I_EDGE In slave mode, the bit is the same as SPI_CK_OUT_EDGE in master mode. It is combined with SPI_MISO_DELAY_MODE
SPI1CLK = 0; // SPI_CLOCK_REG
SPI1U1 = 7 << SPILADDR; // SPI_USER1_REG, set address length to 8 bits - needed, but meaning is not clear
SPI1U2 = 7 << SPILCOMMAND; // SPI_USER2_REG, set command length to 8 bits
SPI1S1 = (19 * 8 - 1) << SPIS1LBUF; // SPI_SLAVE1_REG, SPI_SLV_BUF_BITLEN - doesn't really match SPI_SLAVE1_REG description
SPI1S3 = 0xF1F26CF3; // SPI_SLAVE3_REG, SPI_SLV_RDSTA_CMD_VALUE = 0x6c
SPI1P = 0x20080000; // SPI_PIN_REG, Clock idle high, seems to cause contension on the clock pin if set to idle low.
ETS_SPI_INTR_ATTACH(_hspi_slave_isr_handler, 0);
ETS_SPI_INTR_ENABLE();
}
void setup() {
Serial.begin(115200);
Serial.println();
Serial.printf("%lu:MHI-AC_SPI starting\n", millis());
pinMode(LED_BUILTIN, OUTPUT); // indicates that a frame was received, active low
digitalWrite(LED_BUILTIN, HIGH);
pinMode(SYNC_PIN, OUTPUT);
digitalWrite(SYNC_PIN, LOW);
WiFi.hostname("MHI-AC-SPI");
WiFi.begin(ssid, password);
Serial.println("");
while (WiFi.status() != WL_CONNECTED) {
delay(500);
Serial.print(".");
}
Serial.printf(" connected to %s, IP address: %s\n", ssid, WiFi.localIP().toString().c_str());
hspi_slave_begin();
MQTTclient.setServer("ds218p", 1883);
MQTTreconnect();
}
void loop() {
uint fan_old = 99;
uint power_old = 99;
uint mode_old = 99;
uint databyte3_old = 99;
int troom_old = 99;
uint tsetpoint_old = 99;
char strtmp[10]; // for the MQTT strings to send
sync_isr();
while(1){
if(valid_datapacket_received) { // valid frame received
valid_datapacket_received = false;
last_sync_isrT = millis();
sync_isr();
update_sync(true);
digitalWrite(LED_BUILTIN, HIGH);
if(new_datapacket_received) { // new frame received
new_datapacket_received = false;
MQTTclient.publish("MHI/raw", rx_payload, 19, true);
if((rx_payload[DATABYTE0] & 0x01) != power_old) { // Power
power_old = rx_payload[DATABYTE0] & 0x01;
if(power_old == 0)
MQTTclient.publish("MHI/Power", "off", true);
else
MQTTclient.publish("MHI/Power", "on", true);
}
if((rx_payload[DATABYTE0] & 0x1c) != mode_old) { // Mode
mode_old = rx_payload[DATABYTE0] & 0x1c;
switch (mode_old) {
case 0x00:
MQTTclient.publish("MHI/Mode", "Auto", true);
break;
case 0x04:
MQTTclient.publish("MHI/Mode", "Dry", true);
break;
case 0x08:
MQTTclient.publish("MHI/Mode", "Cool", true);
break;
case 0x0c:
MQTTclient.publish("MHI/Mode", "Fan", true);
break;
case 0x10:
MQTTclient.publish("MHI/Mode", "Heat", true);
break;
default:
MQTTclient.publish("MHI/Mode", "invalid", true);
break;
}
}
uint fantmp;
if((rx_payload[DATABYTE6] & 0x40) > 0) // Fan status
fantmp = 4;
else
fantmp = (rx_payload[DATABYTE1] & 0x03) + 1;
if(fantmp != fan_old){
fan_old = fantmp;
itoa(fan_old, strtmp, 10);
MQTTclient.publish("MHI/fan", strtmp, true);
}
if(abs(rx_payload[DATABYTE3] - databyte3_old) > 1) { // Room temperature delta > 0.25°C
int troom = (rx_payload[DATABYTE3] - 61) / 4;
if((rx_payload[DATABYTE3] - 61) % 4 >= 2)
troom += 1;
databyte3_old = rx_payload[DATABYTE3];
if(troom != troom_old) {
itoa(troom, strtmp, 10);
MQTTclient.publish("MHI/Troom", strtmp, true);
troom_old = troom;
}
}
if((rx_payload[DATABYTE2] & 0x7f) >> 1 != tsetpoint_old) { // Temperature setpoint
tsetpoint_old = (rx_payload[DATABYTE2] & 0x7f) >> 1;
itoa(tsetpoint_old, strtmp, 10);
MQTTclient.publish("MHI/Tsetpoint", strtmp, true);
}
}
}
if(millis() - last_sync_isrT > 53) {
last_sync_isrT = millis();
sync_isr();
update_sync(false);
}
if(sync_changed) {
if(sync)
MQTTclient.publish ("MHI/synced", "1", true);
else
MQTTclient.publish ("MHI/synced", "0", true);
sync_changed = 0;
}
if (millis() - runtimeMillis > 1000) {
runtimeMillis+=1000;
itoa(millis()/1000, strtmp, 10);
MQTTclient.publish("MHI/runtime", strtmp, true);
}
if (!MQTTclient.connected())
MQTTreconnect();
MQTTclient.loop();
delay(0);
}
}