TUPA is a transition-based parser for Universal Conceptual Cognitive Annotation (UCCA).
- Python 3.6+
Install the latest release:
pip install tupa[bert]
Alternatively, install the latest code from GitHub (may be unstable):
pip install git+git://github.com/danielhers/tupa.git#egg=tupa
Having a directory with UCCA passage files (for example, the English Wiki corpus), run:
python -m tupa -t <train_dir> -d <dev_dir> -c <model_type> -m <model_filename>
The possible model types are sparse
, mlp
, and bilstm
.
Run the parser on a text file (here named example.txt
) using a trained model:
python -m tupa example.txt -m <model_filename>
An xml
file will be created per passage (separate by blank lines in the text file).
To visualize output graphs, use the visualize command:
python -m scripts.visualize <xml_files>
To download and extract a model pre-trained on the Wiki corpus, run:
curl -LO https://github.com/huji-nlp/tupa/releases/download/v1.3.10/ucca-bilstm-1.3.10.tar.gz
tar xvzf ucca-bilstm-1.3.10.tar.gz
Run the parser using the model:
python -m tupa example.txt -m models/ucca-bilstm
To get a model pre-trained on the French 20K Leagues corpus or a model pre-trained on the German 20K Leagues corpus, run:
curl -LO https://github.com/huji-nlp/tupa/releases/download/v1.3.10/ucca-bilstm-1.3.10-fr.tar.gz
tar xvzf ucca-bilstm-1.3.10-fr.tar.gz
curl -LO https://github.com/huji-nlp/tupa/releases/download/v1.3.10/ucca-bilstm-1.3.10-de.tar.gz
tar xvzf ucca-bilstm-1.3.10-de.tar.gz
Run the parser on a French/German text file (separate passages by blank lines):
python -m tupa exemple.txt -m models/ucca-bilstm-fr --lang fr
python -m tupa beispiel.txt -m models/ucca-bilstm-de --lang de
BERT can be used instead of standard word embeddings. First, install the required dependencies:
pip install tupa[bert]
or, if you cloned the repository,
pip install -r requirements.bert.txt
Then pass the --use-bert
argument to the training command.
See the possible configuration options in config.py
(relevant options have the prefix bert
).
A multilingual model can be trained, to leverage cross-lingual transfer and improve results on low-resource languages:
- Make sure the input passage files have the
lang
attribute. See the scriptset_lang
in the packagesemstr
. - Enable BERT by passing the
--use-bert
argument. - Use the multilingual model by passing
--bert-model=bert-base-multilingual-cased
. - Pass the
--bert-multilingual=0
argument to enable multilingual training.
Here are the average results over 3 BERT multilingual models trained on the German 20K Leagues corpus, English Wiki corpus and only on 15 sentences from the French 20K Leagues corpus, with the following settings:
bert-model=bert-base-multilingual-cased
bert-layers=-1 -2 -3 -4
bert-layers-pooling=weighted
bert-token-align-by=sum
The results:
description | test primary F1 | test remote F1 | test average |
---|---|---|---|
German 20K Leagues | 0.828 | 0.6723 | 0.824 |
English 20K Leagues | 0.763 | 0.359 | 0.755 |
French 20K Leagues | 0.739 | 0.46 | 0.732 |
English Wiki | 0.789 | 0.581 | 0.784 |
*English 20K Leagues corpus is used as out of domain test.
To download and extract a multilingual model trained with the settings above, run:
curl -LO https://github.com/huji-nlp/tupa/releases/download/v1.4.0/bert_multilingual_layers_4_layers_pooling_weighted_align_sum.tar.gz
tar xvzf bert_multilingual_layers_4_layers_pooling_weighted_align_sum.tar.gz
To run the parser using the model, use the following command. Pay attention that you need to replace [lang]
with
the right language symbol (fr
, en
, or de
):
python -m tupa example.txt --lang [lang] -m bert_multilingual_layers_4_layers_pooling_weighted_align_sum
- Daniel Hershcovich: daniel.hershcovich@gmail.com
- Ofir Arviv: ofir.arviv@mail.huji.ac.il
If you make use of this software, please cite the following paper:
@InProceedings{hershcovich2017a,
author = {Hershcovich, Daniel and Abend, Omri and Rappoport, Ari},
title = {A Transition-Based Directed Acyclic Graph Parser for {UCCA}},
booktitle = {Proc. of ACL},
year = {2017},
pages = {1127--1138},
url = {http://aclweb.org/anthology/P17-1104}
}
The version of the parser used in the paper is v1.0. To reproduce the experiments, run:
curl -L https://raw.githubusercontent.com/huji-nlp/tupa/master/experiments/acl2017.sh | bash
If you use the French, German or multitask models, please cite the following paper:
@InProceedings{hershcovich2018multitask,
author = {Hershcovich, Daniel and Abend, Omri and Rappoport, Ari},
title = {Multitask Parsing Across Semantic Representations},
booktitle = {Proc. of ACL},
year = {2018},
pages = {373--385},
url = {http://aclweb.org/anthology/P18-1035}
}
The version of the parser used in the paper is v1.3.3. To reproduce the experiments, run:
curl -L https://raw.githubusercontent.com/huji-nlp/tupa/master/experiments/acl2018.sh | bash
This package is licensed under the GPLv3 or later license (see LICENSE.txt
).
[ ~ Dependencies scanned by PyUp.io ~ ]