Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add epiphany-*-rtems* to configure.tgt #4

Closed

Conversation

heshamelmatary
Copy link
Contributor

No description provided.

@heshamelmatary
Copy link
Contributor Author

Is there anything wrong with this pull request that prevents it from being merged?

@olajep
Copy link
Contributor

olajep commented Apr 29, 2015

No there is not. Must have missed it, thats all.

Applied in:
f05996c

Thanks,
Ola

@olajep olajep closed this Apr 29, 2015
olajep pushed a commit that referenced this pull request Nov 10, 2016
When I run process-dies-while-detaching.exp with GDBserver, I see many
warnings printed by GDBserver,

ptrace(regsets_fetch_inferior_registers) PID=26183: No such process
ptrace(regsets_fetch_inferior_registers) PID=26183: No such process
ptrace(regsets_fetch_inferior_registers) PID=26184: No such process
ptrace(regsets_fetch_inferior_registers) PID=26184: No such process

regsets_fetch_inferior_registers is called when GDBserver resumes each
lwp.

 #2  0x0000000000428260 in regsets_fetch_inferior_registers (regsets_info=0x4690d0 <aarch64_regsets_info>, regcache=0x31832020)
    at /home/yao/SourceCode/gnu/gdb/git/gdb/gdbserver/linux-low.c:5412
 #3  0x00000000004070e8 in get_thread_regcache (thread=0x31832940, fetch=fetch@entry=1) at /home/yao/SourceCode/gnu/gdb/git/gdb/gdbserver/regcache.c:58
 #4  0x0000000000429c40 in linux_resume_one_lwp_throw (info=<optimized out>, signal=0, step=0, lwp=0x31832830)
    at /home/yao/SourceCode/gnu/gdb/git/gdb/gdbserver/linux-low.c:4463
 #5  linux_resume_one_lwp (lwp=0x31832830, step=<optimized out>, signal=<optimized out>, info=<optimized out>)
    at /home/yao/SourceCode/gnu/gdb/git/gdb/gdbserver/linux-low.c:4573

The is the case that threads are disappeared when GDB/GDBserver resumes
them.  We check errno for ESRCH, and don't print error messages, like
what we are doing in regsets_store_inferior_registers.

gdb/gdbserver:

2016-08-04  Yao Qi  <yao.qi@linaro.org>

	* linux-low.c (regsets_fetch_inferior_registers): Check
	errno is ESRCH or not.
olajep pushed a commit that referenced this pull request Nov 10, 2016
… out value

With something like:

  struct A { int bitfield:4; } var;

If 'var' ends up wholly-optimized out, printing 'var.bitfield' crashes
gdb here:

 (top-gdb) bt
 #0  0x000000000058b89f in extract_unsigned_integer (addr=0x2 <error: Cannot access memory at address 0x2>, len=2, byte_order=BFD_ENDIAN_LITTLE)
     at /home/pedro/gdb/mygit/src/gdb/findvar.c:109
 #1  0x00000000005a187a in unpack_bits_as_long (field_type=0x16cff70, valaddr=0x0, bitpos=16, bitsize=12) at /home/pedro/gdb/mygit/src/gdb/value.c:3347
 #2  0x00000000005a1b9d in unpack_value_bitfield (dest_val=0x1b5d9d0, bitpos=16, bitsize=12, valaddr=0x0, embedded_offset=0, val=0x1b5d8d0)
     at /home/pedro/gdb/mygit/src/gdb/value.c:3441
 #3  0x00000000005a2a5f in value_fetch_lazy (val=0x1b5d9d0) at /home/pedro/gdb/mygit/src/gdb/value.c:3958
 #4  0x00000000005a10a7 in value_primitive_field (arg1=0x1b5d8d0, offset=0, fieldno=0, arg_type=0x16d04c0) at /home/pedro/gdb/mygit/src/gdb/value.c:3161
 #5  0x00000000005b01e5 in do_search_struct_field (name=0x1727c60 "bitfield", arg1=0x1b5d8d0, offset=0, type=0x16d04c0, looking_for_baseclass=0, result_ptr=0x7fffffffcaf8,
 [...]

unpack_value_bitfield is already optimized-out/unavailable -aware:

   (...) VALADDR points to the contents of VAL.  If the VAL's contents
   required to extract the bitfield from are unavailable/optimized
   out, DEST_VAL is correspondingly marked unavailable/optimized out.

however, it is not considering the case of the value having no
contents buffer at all, as can happen through
allocate_optimized_out_value.

gdb/ChangeLog:
2016-08-09  Pedro Alves  <palves@redhat.com>

	* value.c (unpack_value_bitfield): Skip unpacking if the parent
	has no contents buffer to begin with.

gdb/testsuite/ChangeLog:
2016-08-09  Pedro Alves  <palves@redhat.com>

	* gdb.dwarf2/bitfield-parent-optimized-out.exp: New file.
olajep pushed a commit that referenced this pull request Nov 10, 2016
If I build gdb with -fsanitize=address and run tests, I get error,

malformed linespec error: unexpected colon^M
(gdb) PASS: gdb.linespec/ls-errs.exp: lang=C: break     :
break   :=================================================================^M
==3266==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x602000051451 at pc 0x2b5797a972a8 bp 0x7fffd8e0f3c0 sp 0x7fffd8e0f398^M
READ of size 2 at 0x602000051451 thread T0
    #0 0x2b5797a972a7 in __interceptor_strlen (/usr/lib/x86_64-linux-gnu/libasan.so.1+0x322a7)^M
    #1 0x7bd004 in compare_filenames_for_search(char const*, char const*) /home/yao/SourceCode/gnu/gdb/git/gdb/symtab.c:316^M
    #2 0x7bd310 in iterate_over_some_symtabs(char const*, char const*, int (*)(symtab*, void*), void*, compunit_symtab*, compunit_symtab*) /home/yao/SourceCode/gnu/gdb/git/gdb/symtab.c:411^M
    #3 0x7bd775 in iterate_over_symtabs(char const*, int (*)(symtab*, void*), void*) /home/yao/SourceCode/gnu/gdb/git/gdb/symtab.c:481^M
    #4 0x7bda15 in lookup_symtab(char const*) /home/yao/SourceCode/gnu/gdb/git/gdb/symtab.c:527^M
    #5 0x7d5e2a in make_file_symbol_completion_list_1 /home/yao/SourceCode/gnu/gdb/git/gdb/symtab.c:5635^M
    #6 0x7d61e1 in make_file_symbol_completion_list(char const*, char const*, char const*) /home/yao/SourceCode/gnu/gdb/git/gdb/symtab.c:5684^M
    #7 0x88dc06 in linespec_location_completer /home/yao/SourceCode/gnu/gdb/git/gdb/completer.c:288
....
0x602000051451 is located 0 bytes to the right of 1-byte region [0x602000051450,0x602000051451)^M
mallocated by thread T0 here:
    #0 0x2b5797ab97ef in __interceptor_malloc (/usr/lib/x86_64-linux-gnu/libasan.so.1+0x547ef)^M
    #1 0xbbfb8d in xmalloc /home/yao/SourceCode/gnu/gdb/git/gdb/common/common-utils.c:43^M
    #2 0x88dabd in linespec_location_completer /home/yao/SourceCode/gnu/gdb/git/gdb/completer.c:273^M
    #3 0x88e5ef in location_completer(cmd_list_element*, char const*, char const*) /home/yao/SourceCode/gnu/gdb/git/gdb/completer.c:531^M
    #4 0x8902e7 in complete_line_internal /home/yao/SourceCode/gnu/gdb/git/gdb/completer.c:964^

The code in question is here

       file_to_match = (char *) xmalloc (colon - text + 1);
       strncpy (file_to_match, text, colon - text + 1);

it is likely that file_to_match is not null-terminated.  The patch is
to strncpy 'colon - text' bytes and explicitly set '\0'.

gdb:

2016-08-19  Yao Qi  <yao.qi@linaro.org>

	* completer.c (linespec_location_completer): Make file_to_match
	null-terminated.
olajep pushed a commit that referenced this pull request Nov 10, 2016
This patch fixes a problem that problem triggers if you start an
inferior, e.g., with the "start" command, in a UI created with the
new-ui command, and then run a foreground execution command in the
main UI.  Once the program stops for the latter command, typing in the
main UI no longer echoes back to the user.

The problem revolves around this:

- gdb_has_a_terminal computes its result lazily, on first call.

  that is what saves gdb's initial main UI terminal state (the UI
  associated with stdin):

          our_terminal_info.ttystate = serial_get_tty_state (stdin_serial);

  This is the state that target_terminal_ours() restores.

- In this scenario, the gdb_has_a_terminal function happens to be
  first ever called from within the target_terminal_init call in
  startup_inferior:

      (top-gdb) bt
      #0  gdb_has_a_terminal () at src/gdb/inflow.c:157
      #1  0x000000000079db22 in child_terminal_init_with_pgrp () at src/gdb/inflow.c:217
       [...]
      #4  0x000000000065bacb in target_terminal_init () at src/gdb/target.c:456
      #5  0x00000000004676d2 in startup_inferior () at src/gdb/fork-child.c:531
       [...]
      #7  0x000000000046b168 in linux_nat_create_inferior () at src/gdb/linux-nat.c:1112
       [...]
      #9  0x00000000005f20c9 in start_command (args=0x0, from_tty=1) at src/gdb/infcmd.c:657

If the command to start the inferior is issued on the main UI, then
readline will have deprepped the terminal when we reach the above, and
the problem doesn't appear.

If however the command is issued on a non-main UI, then when we reach
that gdb_has_a_terminal call, the main UI's terminal state is still
set to whatever readline has sets it to in rl_prep_terminal, which
happens to have echo disabled.  Later, when the following synchronous
execution command finishes, we'll call target_terminal_ours to restore
gdb's the main UI's terminal settings, and that restores the terminal
state with echo disabled...

Conceptually, the fix is to move the gdb_has_a_terminal call earlier,
to someplace during GDB initialization, before readline/ncurses have
had a chance to change terminal settings.  Turns out that
"set_initial_gdb_ttystate" is exactly such a place.

I say conceptually, because the fix actually inlines the
gdb_has_a_terminal part that saves the terminal state in
set_initial_gdb_ttystate and then simplifies gdb_has_a_terminal, since
there's no point in making gdb_has_a_terminal do lazy computation.

gdb/ChangeLog:
2016-08-23  Pedro Alves  <palves@redhat.com>

	PR gdb/20494
	* inflow.c (our_terminal_info, initial_gdb_ttystate): Update
	comments.
	(enum gdb_has_a_terminal_flag_enum, gdb_has_a_terminal_flag):
	Delete.
	(set_initial_gdb_ttystate): Record our_terminal_info here too,
	instead of ...
	(gdb_has_a_terminal): ... here.  Reimplement in terms of
	initial_gdb_ttystate.  Make static.
	* terminal.h (gdb_has_a_terminal): Delete declaration.
	(set_initial_gdb_ttystate): Add comment.
	* top.c (show_interactive_mode): Use input_interactive_p instead
	of gdb_has_a_terminal.

gdb/testsuite/ChangeLog:
2016-08-23  Pedro Alves  <palves@redhat.com>

	PR gdb/20494
	* gdb.base/new-ui-echo.c: New file.
	* gdb.base/new-ui-echo.exp: New file.
olajep pushed a commit that referenced this pull request Nov 10, 2016
Even though this was supposedly in the gdb 7.2 timeframe, the testcase
in PR11094 crashes current GDB with a segfault:

  Program received signal SIGSEGV, Segmentation fault.
  0x00000000005ee894 in event_location_to_string (location=0x0) at
  src/gdb/location.c:412
  412       if (EL_STRING (location) == NULL)
  (top-gdb) bt
  #0  0x00000000005ee894 in event_location_to_string (location=0x0) at
  src/gdb/location.c:412
  #1  0x000000000057411a in print_breakpoint_location (b=0x18288e0, loc=0x0) at
  src/gdb/breakpoint.c:6201
  #2  0x000000000057483f in print_one_breakpoint_location (b=0x18288e0,
  loc=0x182cf10, loc_number=0, last_loc=0x7fffffffd258, allflag=1)
      at src/gdb/breakpoint.c:6473
  #3  0x00000000005751e1 in print_one_breakpoint (b=0x18288e0,
  last_loc=0x7fffffffd258, allflag=1) at
  src/gdb/breakpoint.c:6707
  #4  0x000000000057589c in breakpoint_1 (args=0x0, allflag=1, filter=0x0) at
  src/gdb/breakpoint.c:6947
  #5  0x0000000000575aa8 in maintenance_info_breakpoints (args=0x0, from_tty=0)
  at src/gdb/breakpoint.c:7026
  [...]

This is GDB trying to print the location spec of the JIT event
breakpoint, but that's an internal breakpoint without one.

If I add a NULL check, then we see that the JIT breakpoint is now
pending (because its location has shlib_disabled set):

  (gdb) maint info breakpoints
  Num     Type           Disp Enb Address            What
  [...]
  -8      jit events     keep y   <PENDING>           inf 1
  [...]

But that's incorrect.  GDB should have managed to recreate the JIT
breakpoint's location for the second run.  So the problem is
elsewhere.

The problem is that if the JIT loads at the same address on the second
run, we never recreate the JIT breakpoint, because we hit this early
return:

  static int
  jit_breakpoint_re_set_internal (struct gdbarch *gdbarch,
				  struct jit_program_space_data *ps_data)
  {
    [...]
    if (ps_data->cached_code_address == addr)
      return 0;

    [...]
      delete_breakpoint (ps_data->jit_breakpoint);
    [...]
    ps_data->jit_breakpoint = create_jit_event_breakpoint (gdbarch, addr);

Fix this by deleting the breakpoint and discarding the cached code
address when the objfile where the previous JIT breakpoint was found
is deleted/unloaded in the first place.

The test that was originally added for PR11094 doesn't trip on this
because:

  #1 - It doesn't test the case of the JIT descriptor's address _not_
       changing between reruns.

  #2 - And then it doesn't do "maint info breakpoints", or really
       anything with the JIT at all.

  #3 - and even then, to trigger the problem the JIT descriptor needs
       to be in a separate library, while the current test puts it in
       the main program.

The patch extends the test to cover all combinations of these
scenarios.

gdb/ChangeLog:
2016-10-06  Pedro Alves  <palves@redhat.com>

	* jit.c (free_objfile_data): Delete the JIT breakpoint and clear
	the cached code address.

gdb/testsuite/ChangeLog:
2016-10-06  Pedro Alves  <palves@redhat.com>

	* gdb.base/jit-simple-dl.c: New file.
	* gdb.base/jit-simple-jit.c: New file, factored out from ...
	* gdb.base/jit-simple.c: ... this.
	* gdb.base/jit-simple.exp (jit_run): Delete.
	(build_jit): New proc.
	(jit_test_reread): Recompile either the main program or the shared
	library, depending on what is being tested.  Skip changing address
	if caller wants to.  Compare before/after addresses.  If testing
	standalone, explicitly load the binary.  Test "maint info
	breakpoints".
	(top level): Add "standalone vs shared lib" and "change address"
	vs "same address" axes.
olajep pushed a commit that referenced this pull request Nov 10, 2016
Currently GDB never sends more than one action per vCont packet, when
connected in non-stop mode.  A follow up patch will change that, and
it exposed a gdbserver problem with the vCont handling.

For example, this in non-stop mode:

  => vCont;s:p1.1;c
  <= OK

Should be equivalent to:

  => vCont;s:p1.1
  <= OK
  => vCont;c
  <= OK

But gdbserver currently doesn't handle this.  In the latter case,
"vCont;c" makes gdbserver clobber the previous step request.  This
patch fixes that.

Note the server side must ignore resume actions for the thread that
has a pending %Stopped notification (and any other threads with events
pending), until GDB acks the notification with vStopped.  Otherwise,
e.g., the following case is mishandled:

 #1 => g  (or any other packet)
 #2 <= [registers]
 #3 <= %Stopped T05 thread:p1.2
 #4 => vCont s:p1.1;c
 #5 <= OK

Above, the server must not resume thread p1.2 when it processes the
vCont.  GDB can't know that p1.2 stopped until it acks the %Stopped
notification.  (Otherwise it wouldn't send a default "c" action.)

(The vCont documentation already specifies this.)

Finally, special care must also be given to handling fork/vfork
events.  A (v)fork event actually tells us that two processes stopped
-- the parent and the child.  Until we follow the fork, we must not
resume the child.  Therefore, if we have a pending fork follow, we
must not send a global wildcard resume action (vCont;c).  We can still
send process-wide wildcards though.

(The comments above will be added as code comments to gdb in a follow
up patch.)

gdb/gdbserver/ChangeLog:
2016-10-26  Pedro Alves  <palves@redhat.com>

	* linux-low.c (handle_extended_wait): Link parent/child fork
	threads.
	(linux_wait_1): Unlink them.
	(linux_set_resume_request): Ignore resume requests for
	already-resumed and unhandled fork child threads.
	* linux-low.h (struct lwp_info) <fork_relative>: New field.
	* server.c (in_queued_stop_replies_ptid, in_queued_stop_replies):
	New functions.
	(handle_v_requests) <vCont>: Don't call require_running.
	* server.h (in_queued_stop_replies): New declaration.
olajep pushed a commit that referenced this pull request Nov 10, 2016
Most of the time, the trace should be in one piece.  This case is handled fine
by GDB.  In some cases, however, there may be gaps in the trace.  They result
from trace decode errors or from overflows.

A gap in the trace means we lost an unknown amount of trace.  Gaps can be very
small, such as a few instructions in the same function, or they can be rather
big.  We may, for example, lose a few function calls or returns.  The trace may
continue in a different function and we likely don't know how we got there.

Even though we can't say how the program executed across a gap, higher levels
may not be impacted too much by it.  Let's assume we have functions a-e and a
trace that looks roughly like this:

  a
   \
    b                    b
     \                  /
      c   <gap>        c
                      /
                 d   d
                  \ /
                   e

Even though we can't say for sure, it is likely that b and c are the same
function instance before and after the gap.  This patch is trying to connect
the c and b function segments across the gap.

This will add a to the back trace of b on the right hand side.  The changes are
reflected in GDB's internal representation of the trace and will improve:

  - the output of "record function-call-history /c"
  - the output of "backtrace" in replay mode
  - source stepping in replay mode
    will be improved indirectly via the improved back trace

I don't have an automated test for this patch; decode errors will be fixed and
overflows occur sporadically and are quite rare.  I tested it by hacking GDB to
provoke a decode error and on the expected gap in the gdb.btrace/dlopen.exp
test.

The issue is that we can't predict where we will be able to re-sync in case of
errors.  For the expected decode error in gdb.btrace/dlopen.exp, for example, we
may be able to re-sync somewhere in dlclose, in test, in main, or not at all.

Here's one example run of gdb.btrace/dlopen.exp with and without this patch.

    (gdb) info record
    Active record target: record-btrace
    Recording format: Intel Processor Trace.
    Buffer size: 16kB.
    warning: Non-contiguous trace at instruction 66608 (offset = 0xa83, pc = 0xb7fdcc31).
    warning: Non-contiguous trace at instruction 66652 (offset = 0xa9b, pc = 0xb7fdcc31).
    warning: Non-contiguous trace at instruction 66770 (offset = 0xacb, pc = 0xb7fdcc31).
    warning: Non-contiguous trace at instruction 66966 (offset = 0xb60, pc = 0xb7ff5ee4).
    warning: Non-contiguous trace at instruction 66994 (offset = 0xb74, pc = 0xb7ff5f24).
    warning: Non-contiguous trace at instruction 67334 (offset = 0xbac, pc = 0xb7ff5e6d).
    warning: Non-contiguous trace at instruction 69022 (offset = 0xc04, pc = 0xb7ff60b3).
    warning: Non-contiguous trace at instruction 69116 (offset = 0xc1c, pc = 0xb7ff60b3).
    warning: Non-contiguous trace at instruction 69504 (offset = 0xc74, pc = 0xb7ff605d).
    warning: Non-contiguous trace at instruction 83648 (offset = 0xecc, pc = 0xb7ff6134).
    warning: Decode error (-13) at instruction 83876 (offset = 0xf48, pc = 0xb7fd6380): no memory mapped at this address.
    warning: Non-contiguous trace at instruction 83876 (offset = 0x11b7, pc = 0xb7ff1c70).
    Recorded 83948 instructions in 912 functions (12 gaps) for thread 1 (process 12996).
    (gdb) record instruction-history 83876, +2
    83876   => 0xb7fec46f <call_init.part.0+95>:    call   *%eax
    [decode error (-13): no memory mapped at this address]
    [disabled]
    83877      0xb7ff1c70 <_dl_close_worker.part.0+1584>:   nop

Without the patch, the trace is disconnected and the backtrace is short:

    (gdb) record goto 83876
    #0  0xb7fec46f in call_init.part () from /lib/ld-linux.so.2
    (gdb) backtrace
    #0  0xb7fec46f in call_init.part () from /lib/ld-linux.so.2
    #1  0xb7fec5d0 in _dl_init () from /lib/ld-linux.so.2
    #2  0xb7ff0fe3 in dl_open_worker () from /lib/ld-linux.so.2
    Backtrace stopped: not enough registers or memory available to unwind further
    (gdb) record goto 83877
    #0  0xb7ff1c70 in _dl_close_worker.part.0 () from /lib/ld-linux.so.2
    (gdb) backtrace
    #0  0xb7ff1c70 in _dl_close_worker.part.0 () from /lib/ld-linux.so.2
    #1  0xb7ff287a in _dl_close () from /lib/ld-linux.so.2
    #2  0xb7fc3d5d in dlclose_doit () from /lib/libdl.so.2
    #3  0xb7fec354 in _dl_catch_error () from /lib/ld-linux.so.2
    #4  0xb7fc43dd in _dlerror_run () from /lib/libdl.so.2
    #5  0xb7fc3d98 in dlclose () from /lib/libdl.so.2
    #6  0x0804860a in test ()
    #7  0x08048628 in main ()

With the patch, GDB is able to connect the trace pieces and we get a full
backtrace.

    (gdb) record goto 83876
    #0  0xb7fec46f in call_init.part () from /lib/ld-linux.so.2
    (gdb) backtrace
    #0  0xb7fec46f in call_init.part () from /lib/ld-linux.so.2
    #1  0xb7fec5d0 in _dl_init () from /lib/ld-linux.so.2
    #2  0xb7ff0fe3 in dl_open_worker () from /lib/ld-linux.so.2
    #3  0xb7fec354 in _dl_catch_error () from /lib/ld-linux.so.2
    #4  0xb7ff02e2 in _dl_open () from /lib/ld-linux.so.2
    #5  0xb7fc3c65 in dlopen_doit () from /lib/libdl.so.2
    #6  0xb7fec354 in _dl_catch_error () from /lib/ld-linux.so.2
    #7  0xb7fc43dd in _dlerror_run () from /lib/libdl.so.2
    #8  0xb7fc3d0e in dlopen@@GLIBC_2.1 () from /lib/libdl.so.2
    #9  0xb7ff28ee in _dl_runtime_resolve () from /lib/ld-linux.so.2
    #10 0x0804841c in ?? ()
    #11 0x08048470 in dlopen@plt ()
    #12 0x080485a3 in test ()
    #13 0x08048628 in main ()
    (gdb) record goto 83877
    #0  0xb7ff1c70 in _dl_close_worker.part.0 () from /lib/ld-linux.so.2
    (gdb) backtrace
    #0  0xb7ff1c70 in _dl_close_worker.part.0 () from /lib/ld-linux.so.2
    #1  0xb7ff287a in _dl_close () from /lib/ld-linux.so.2
    #2  0xb7fc3d5d in dlclose_doit () from /lib/libdl.so.2
    #3  0xb7fec354 in _dl_catch_error () from /lib/ld-linux.so.2
    #4  0xb7fc43dd in _dlerror_run () from /lib/libdl.so.2
    #5  0xb7fc3d98 in dlclose () from /lib/libdl.so.2
    #6  0x0804860a in test ()
    #7  0x08048628 in main ()

It worked nicely in this case but it may, of course, also lead to weird
connections; it is a heuristic, after all.

It works best when the gap is small and the trace pieces are long.

gdb/
	* btrace.c (bfun_s): New typedef.
	(ftrace_update_caller): Print caller in debug dump.
	(ftrace_get_caller, ftrace_match_backtrace, ftrace_fixup_level)
	(ftrace_compute_global_level_offset, ftrace_connect_bfun)
	(ftrace_connect_backtrace, ftrace_bridge_gap, btrace_bridge_gaps): New.
	(btrace_compute_ftrace_bts): Pass vector of gaps.  Collect gaps.
	(btrace_compute_ftrace_pt): Likewise.
	(btrace_compute_ftrace): Split into this, ...
	(btrace_compute_ftrace_1): ... this, and ...
	(btrace_finalize_ftrace): ... this.  Call btrace_bridge_gaps.
olajep pushed a commit that referenced this pull request Mar 25, 2019
… gdb/23377)

This fixes a gdb.base/multi-forks.exp regression with GDBserver.

Git commit f2ffa92 ("gdb: Eliminate the 'stop_pc' global") caused
the regression by exposing a latent bug in gdbserver.

The bug is that GDBserver's implementation of the D;PID packet
incorrectly assumes that the selected thread points to the process
being detached.  This happens via the any_persistent_commands call,
which calls current_process:

  (gdb) bt
  #0  0x000000000040a57e in internal_error(char const*, int, char const*, ...)
  (file=0x4a53c0 "src/gdb/gdbserver/inferiors.c", line=212, fmt=0x4a539e "%s:
  Assertion `%s' failed.") at src/gdb/gdbserver/../common/errors.c:54
  #1  0x0000000000420acf in current_process() () at
  src/gdb/gdbserver/inferiors.c:212
  #2  0x00000000004226a0 in any_persistent_commands() () at
  gdb/gdbserver/mem-break.c:308
  #3  0x000000000042cb43 in handle_detach(char*) (own_buf=0x6f0280 "D;62ea") at
  src/gdb/gdbserver/server.c:1210
  #4  0x0000000000433af3 in process_serial_event() () at
  src/gdb/gdbserver/server.c:4055
  #5  0x0000000000434878 in handle_serial_event(int, void*) (err=0,
  client_data=0x0)

The "eliminate stop_pc" commit exposes the problem because before that
commit, GDB's switch_to_thread always read the newly-selected thread's
PC, and that would end up forcing GDBserver's selected thread to
change accordingly as side effect.  After that commit, GDB no longer
reads the thread's PC, and GDBserver does not switch the thread.

Fix this by removing the assumption from GDBserver.

gdb/gdbserver/ChangeLog:
2018-07-11  Pedro Alves  <palves@redhat.com>

	PR gdb/23377
	* mem-break.c (any_persistent_commands): Add process_info
	parameter and use it instead of relying on the current process.
	Change return type to bool.
	* mem-break.h (any_persistent_commands): Add process_info
	parameter and change return type to bool.
	* server.c (handle_detach): Remove require_running_or_return call.
	Look up the process_info for the process we're about to detach.
	If not found, return back error to GDB.  Adjust
	any_persistent_commands call to pass down a process pointer.
olajep pushed a commit that referenced this pull request Mar 25, 2019
…b/23379)

This commit fixes a 8.1->8.2 regression exposed by
gdb.python/py-evthreads.exp when testing with
--target_board=native-gdbserver.

gdb.log shows:

  src/gdb/thread.c:93: internal-error: thread_info* inferior_thread(): Assertion `tp' failed.
  A problem internal to GDB has been detected,
  further debugging may prove unreliable.
  Quit this debugging session? (y or n) FAIL: gdb.python/py-evthreads.exp: run to breakpoint 1 (GDB internal error)

A backtrace shows (frames #2 and #10 highlighted) that the assertion
fails when GDB is setting up the connection to the remote target, in
non-stop mode:

  #0  0x0000000000622ff0 in internal_error(char const*, int, char const*, ...) (file=0xc1ad98 "src/gdb/thread.c", line=93, fmt=0xc1ad20 "%s: Assertion `%s' failed.") at src/gdb/common/errors.c:54
  #1  0x000000000089567e in inferior_thread() () at src/gdb/thread.c:93
= #2  0x00000000004da91d in get_event_thread() () at src/gdb/python/py-threadevent.c:38
  #3  0x00000000004da9b7 in create_thread_event_object(_typeobject*, _object*) (py_type=0x11574c0 <continue_event_object_type>, thread=0x0)
      at src/gdb/python/py-threadevent.c:60
  #4  0x00000000004bf6fe in create_continue_event_object() () at src/gdb/python/py-continueevent.c:27
  #5  0x00000000004bf738 in emit_continue_event(ptid_t) (ptid=...) at src/gdb/python/py-continueevent.c:40
  #6  0x00000000004c7d47 in python_on_resume(ptid_t) (ptid=...) at src/gdb/python/py-inferior.c:108
  #7  0x0000000000485bfb in std::_Function_handler<void (ptid_t), void (*)(ptid_t)>::_M_invoke(std::_Any_data const&, ptid_t&&) (__functor=..., __args#0=...) at /usr/include/c++/7/bits/std_function.h:316
  #8  0x000000000089b416 in std::function<void (ptid_t)>::operator()(ptid_t) const (this=0x12aa600, __args#0=...)
      at /usr/include/c++/7/bits/std_function.h:706
  #9  0x000000000089aa0e in gdb::observers::observable<ptid_t>::notify(ptid_t) const (this=0x118a7a0 <gdb::observers::target_resumed>, args#0=...)
      at src/gdb/common/observable.h:106
= #10 0x0000000000896fbe in set_running(ptid_t, int) (ptid=..., running=1) at src/gdb/thread.c:880
  #11 0x00000000007f750f in remote_target::remote_add_thread(ptid_t, bool, bool) (this=0x12c5440, ptid=..., running=true, executing=true) at src/gdb/remote.c:2434
  #12 0x00000000007f779d in remote_target::remote_notice_new_inferior(ptid_t, int) (this=0x12c5440, currthread=..., executing=1)
      at src/gdb/remote.c:2515
  #13 0x00000000007f9c44 in remote_target::update_thread_list() (this=0x12c5440) at src/gdb/remote.c:3831
  #14 0x00000000007fb922 in remote_target::start_remote(int, int) (this=0x12c5440, from_tty=0, extended_p=0)
      at src/gdb/remote.c:4655
  #15 0x00000000007fd102 in remote_target::open_1(char const*, int, int) (name=0x1a4f45e "localhost:2346", from_tty=0, extended_p=0)
      at src/gdb/remote.c:5638
  #16 0x00000000007fbec1 in remote_target::open(char const*, int) (name=0x1a4f45e "localhost:2346", from_tty=0)
      at src/gdb/remote.c:4862

So on frame #10, we're marking a newly-discovered thread as running,
and that causes the Python API to emit a gdb.ContinueEvent.
gdb.ContinueEvent is a gdb.ThreadEvent, and as such includes the event
thread as the "inferior_thread" attribute.  The problem is that when
we get to frame #3/#4, we lost all references to the thread that is
being marked as running.  create_continue_event_object assumes that it
is the current thread, which is not true in this case.

Fix this by passing down the right thread in
create_continue_event_object.  Also remove
create_thread_event_object's default argument and have the only other
caller left pass down the right thread explicitly too.

gdb/ChangeLog:
2018-08-24  Pedro Alves  <palves@redhat.com>
	    Simon Marchi  <simon.marchi@ericsson.com>

	PR gdb/23379
	* python/py-continueevent.c: Include "gdbthread.h".
	(create_continue_event_object): Add intro comment.  Add 'ptid'
	parameter.  Use it to find thread to pass to
	create_thread_event_object.
	(emit_continue_event): Pass PTID down to
	create_continue_event_object.
	* python/py-event.h (py_get_event_thread): Declare.
	(create_thread_event_object): Remove default from 'thread'
	parameter.
	* python/py-stopevent.c (create_stop_event_object): Use
	py_get_event_thread.
	* python/py-threadevent.c (get_event_thread): Rename to ...
	(py_get_event_thread): ... this, make extern, add 'ptid' parameter
	and use it to find the thread.
	(create_thread_event_object): Assert that THREAD isn't null.
	Don't find the event thread here.
olajep pushed a commit to olajep/epiphany-binutils-gdb that referenced this pull request Oct 16, 2022
On async targets, a synchronous attach is done like this:

   adapteva#1 - target_attach is called (PTRACE_ATTACH is issued)
   adapteva#2 - a continuation is installed
   adapteva#3 - we go back to the event loop
   adapteva#4 - target reports stop (SIGSTOP), event loop wakes up, and
        attach continuation is called
   adapteva#5 - among other things, the continuation calls
        target_terminal_inferior, which removes stdin from the event
        loop

Note that in adapteva#3, GDB is still processing user input.  If the user is
fast enough, e.g., with something like:

  echo -e "attach PID\nset xxx=1" | gdb

... then the "set" command is processed before the attach completes.

We get worse behavior even, if input is a tty and therefore
readline/editing is enabled, with e.g.,:

 (gdb) attach PID\nset xxx=1

we then crash readline/gdb, with:

 Attaching to program: attach-wait-input, process 14537
 readline: readline_callback_read_char() called with no handler!
 Aborted
 $

Fix this by calling target_terminal_inferior before adapteva#3 above.

The test covers both scenarios by running with editing/readline forced
to both on and off.

gdb/
2014-07-09  Pedro Alves  <palves@redhat.com>

	* infcmd.c (attach_command_post_wait): Don't call
	target_terminal_inferior here.
	(attach_command): Call it here instead.

gdb/testsuite/
2014-07-09  Pedro Alves  <palves@redhat.com>

	* gdb.base/attach-wait-input.exp: New file.
	* gdb.base/attach-wait-input.c: New file.
olajep pushed a commit to olajep/epiphany-binutils-gdb that referenced this pull request Oct 16, 2022
Here's an example, with the new test:

 gdbserver :9999 gdb.threads/kill
 gdb gdb.threads/kill
 (gdb) b 52
 Breakpoint 1 at 0x4007f4: file kill.c, line 52.
 Continuing.

 Breakpoint 1, main () at kill.c:52
 52        return 0; /* set break here */
 (gdb) k
 Kill the program being debugged? (y or n) y

 gdbserver :9999 gdb.threads/kill
 Process gdb.base/watch_thread_num created; pid = 9719
 Listening on port 1234
 Remote debugging from host 127.0.0.1
 Killing all inferiors
 Segmentation fault (core dumped)

Backtrace:

 (gdb) bt
 #0  0x00000000004068a0 in find_inferior (list=0x66b060 <all_threads>, func=0x427637 <kill_one_lwp_callback>, arg=0x7fffffffd3fc) at src/gdb/gdbserver/inferiors.c:199
 adapteva#1  0x00000000004277b6 in linux_kill (pid=15708) at src/gdb/gdbserver/linux-low.c:966
 adapteva#2  0x000000000041354d in kill_inferior (pid=15708) at src/gdb/gdbserver/target.c:163
 adapteva#3  0x00000000004107e9 in kill_inferior_callback (entry=0x6704f0) at src/gdb/gdbserver/server.c:2934
 adapteva#4  0x0000000000406522 in for_each_inferior (list=0x66b050 <all_processes>, action=0x4107a6 <kill_inferior_callback>) at src/gdb/gdbserver/inferiors.c:57
 adapteva#5  0x0000000000412377 in process_serial_event () at src/gdb/gdbserver/server.c:3767
 adapteva#6  0x000000000041267c in handle_serial_event (err=0, client_data=0x0) at src/gdb/gdbserver/server.c:3880
 adapteva#7  0x00000000004189ff in handle_file_event (event_file_desc=4) at src/gdb/gdbserver/event-loop.c:434
 adapteva#8  0x00000000004181c6 in process_event () at src/gdb/gdbserver/event-loop.c:189
 adapteva#9  0x0000000000418f45 in start_event_loop () at src/gdb/gdbserver/event-loop.c:552
 adapteva#10 0x0000000000411272 in main (argc=3, argv=0x7fffffffd8d8) at src/gdb/gdbserver/server.c:3283

The problem is that linux_wait_for_event deletes lwps that have exited
(even those not passed in as lwps of interest), while the lwp/thread
list is being walked on with find_inferior.  find_inferior can handle
the current iterated inferior being deleted, but not others.

When killing lwps, we don't really care about any of the pending
status handling of linux_wait_for_event.  We can just waitpid the lwps
directly, which is also what GDB does (see
linux-nat.c:kill_wait_callback).  This way the lwps are not deleted
while we're walking the list.  They'll be deleted by linux_mourn
afterwards.

This crash triggers several times when running the testsuite against
GDBserver with the native-gdbserver board (target remote), but as GDB
can't distinguish between GDBserver crashing and "kill" being
sucessful, as in both cases the connection is closed (the 'k' packet
doesn't require a reply), and the inferior is gone, that results in no
FAIL.

The patch adds a generic test that catches the issue with
extended-remote mode (and works fine with native testing too).  Here's
how it fails with the native-extended-gdbserver board without the fix:

 (gdb) info threads
   Id   Target Id         Frame
   6    Thread 15367.15374 0x000000373bcbc98d in nanosleep () at ../sysdeps/unix/syscall-template.S:81
   5    Thread 15367.15373 0x000000373bcbc98d in nanosleep () at ../sysdeps/unix/syscall-template.S:81
   4    Thread 15367.15372 0x000000373bcbc98d in nanosleep () at ../sysdeps/unix/syscall-template.S:81
   3    Thread 15367.15371 0x000000373bcbc98d in nanosleep () at ../sysdeps/unix/syscall-template.S:81
   2    Thread 15367.15370 0x000000373bcbc98d in nanosleep () at ../sysdeps/unix/syscall-template.S:81
 * 1    Thread 15367.15367 main () at .../gdb.threads/kill.c:52
 (gdb) kill
 Kill the program being debugged? (y or n) y
 Remote connection closed
 ^^^^^^^^^^^^^^^^^^^^^^^^
 (gdb) FAIL: gdb.threads/kill.exp: kill

Extended remote should remain connected after the kill.

gdb/gdbserver/
2014-07-11  Pedro Alves  <palves@redhat.com>

	* linux-low.c (kill_wait_lwp): New function, based on
	kill_one_lwp_callback, but use my_waitpid directly.
	(kill_one_lwp_callback, linux_kill): Use it.

gdb/testsuite/
2014-07-11  Pedro Alves  <palves@redhat.com>

	* gdb.threads/kill.c: New file.
	* gdb.threads/kill.exp: New file.
olajep pushed a commit to olajep/epiphany-binutils-gdb that referenced this pull request Oct 16, 2022
The tests at
<https://sourceware.org/ml/gdb-patches/2014-07/msg00277.html> show
that comparing a fully optimized out value's contents with a value
that has not been optimized out, or is partially optimized out crashes
GDB:

 (gdb) bt
 #0  __memcmp_sse4_1 () at ../sysdeps/x86_64/multiarch/memcmp-sse4.S:816
 adapteva#1  0x00000000005a1914 in memcmp_with_bit_offsets (ptr1=0x202b2f0 "\n", offset1_bits=0, ptr2=0x0, offset2_bits=0, length_bits=32)
     at /home/pedro/gdb/mygit/build/../src/gdb/value.c:678
 adapteva#2  0x00000000005a1a05 in value_available_contents_bits_eq (val1=0x2361ad0, offset1=0, val2=0x23683b0, offset2=0, length=32)
     at /home/pedro/gdb/mygit/build/../src/gdb/value.c:717
 adapteva#3  0x00000000005a1c09 in value_available_contents_eq (val1=0x2361ad0, offset1=0, val2=0x23683b0, offset2=0, length=4)
     at /home/pedro/gdb/mygit/build/../src/gdb/value.c:769
 adapteva#4  0x00000000006033ed in read_frame_arg (sym=0x1b78d20, frame=0x19bca50, argp=0x7fff4aba82b0, entryargp=0x7fff4aba82d0)
     at /home/pedro/gdb/mygit/build/../src/gdb/stack.c:416
 adapteva#5  0x0000000000603abb in print_frame_args (func=0x1b78cb0, frame=0x19bca50, num=-1, stream=0x1aea450) at /home/pedro/gdb/mygit/build/../src/gdb/stack.c:671
 adapteva#6  0x0000000000604ae8 in print_frame (frame=0x19bca50, print_level=0, print_what=SRC_AND_LOC, print_args=1, sal=...)
     at /home/pedro/gdb/mygit/build/../src/gdb/stack.c:1205
 adapteva#7  0x0000000000604050 in print_frame_info (frame=0x19bca50, print_level=0, print_what=SRC_AND_LOC, print_args=1, set_current_sal=1)
     at /home/pedro/gdb/mygit/build/../src/gdb/stack.c:857
 adapteva#8  0x00000000006029b3 in print_stack_frame (frame=0x19bca50, print_level=0, print_what=SRC_AND_LOC, set_current_sal=1)
     at /home/pedro/gdb/mygit/build/../src/gdb/stack.c:169
 adapteva#9  0x00000000005fc4b8 in print_stop_event (ws=0x7fff4aba8790) at /home/pedro/gdb/mygit/build/../src/gdb/infrun.c:6068
 adapteva#10 0x00000000005fc830 in normal_stop () at /home/pedro/gdb/mygit/build/../src/gdb/infrun.c:6214

The 'ptr2=0x0' in frame adapteva#1 is val2->contents, and since git 4f14910:

    gdb/ChangeLog
    2013-11-26  Andrew Burgess  <aburgess@broadcom.com>

        * value.c (allocate_optimized_out_value): Mark value as non-lazy.

... a fully optimized-out value can have it's value contents buffer
NULL.

As a spotgap fix, revert 4f14910, with a comment.  A full fix would
be too invasive for 7.8.

gdb/
2014-07-22  Pedro Alves  <palves@redhat.com>

	* value.c (allocate_optimized_out_value): Don't mark value as
	non-lazy.
olajep pushed a commit to olajep/epiphany-binutils-gdb that referenced this pull request Oct 16, 2022
The TUI currently crashes when the user types <return> in response to
a pagination prompt:

  $ gdb --tui ...
  *the TUI is now active*
  (gdb) set height 2
  (gdb) help
  List of classes of commands:

  Program received signal SIGSEGV, Segmentation fault.
  strlen () at ../sysdeps/x86_64/strlen.S:106
  106             movdqu  (%rax), %xmm12

  (top-gdb) bt
  #0  strlen () at ../sysdeps/x86_64/strlen.S:106
  adapteva#1  0x000000000086be5f in xstrdup (s=0x0) at ../src/libiberty/xstrdup.c:33
  adapteva#2  0x00000000005163f9 in tui_prep_terminal (notused1=1) at ../src/gdb/tui/tui-io.c:296
  adapteva#3  0x000000000077a7ee in _rl_callback_newline () at ../src/readline/callback.c:82
  adapteva#4  0x000000000077a853 in rl_callback_handler_install (prompt=0x0, linefunc=0x618b60 <command_line_handler>) at ../src/readline/callback.c:102
  adapteva#5  0x0000000000718a5c in gdb_readline_wrapper_cleanup (arg=0xfd14d0) at ../src/gdb/top.c:788
  adapteva#6  0x0000000000596d08 in do_my_cleanups (pmy_chain=0xcf0b38 <cleanup_chain>, old_chain=0x1043d10) at ../src/gdb/cleanups.c:155
  adapteva#7  0x0000000000596d75 in do_cleanups (old_chain=0x1043d10) at ../src/gdb/cleanups.c:177
  adapteva#8  0x0000000000718bd9 in gdb_readline_wrapper (prompt=0x7fffffffcfa0 "---Type <return> to continue, or q <return> to quit---")
      at ../src/gdb/top.c:835
  adapteva#9  0x000000000071cf74 in prompt_for_continue () at ../src/gdb/utils.c:1894
  adapteva#10 0x000000000071d434 in fputs_maybe_filtered (linebuffer=0x1043db0 "List of classes of commands:\n\n", stream=0xf72e20, filter=1)
      at ../src/gdb/utils.c:2111
  adapteva#11 0x000000000071da0f in vfprintf_maybe_filtered (stream=0xf72e20, format=0x89aef8 "List of classes of %scommands:\n\n", args=0x7fffffffd118, filter=1)
      at ../src/gdb/utils.c:2339
  #12 0x000000000071da4a in vfprintf_filtered (stream=0xf72e20, format=0x89aef8 "List of classes of %scommands:\n\n", args=0x7fffffffd118)
      at ../src/gdb/utils.c:2347
  #13 0x000000000071dc72 in fprintf_filtered (stream=0xf72e20, format=0x89aef8 "List of classes of %scommands:\n\n") at ../src/gdb/utils.c:2399
  #14 0x00000000004f90ab in help_list (list=0xe6d100, cmdtype=0x89ad8c "", class=all_classes, stream=0xf72e20)
      at ../src/gdb/cli/cli-decode.c:1038
  #15 0x00000000004f8dba in help_cmd (arg=0x0, stream=0xf72e20) at ../src/gdb/cli/cli-decode.c:946

Git 0017922 added:

    @@ -776,6 +777,12 @@ gdb_readline_wrapper_cleanup (void *arg)

     gdb_assert (input_handler == gdb_readline_wrapper_line);
     input_handler = cleanup->handler_orig;
  +
  +  /* Reinstall INPUT_HANDLER in readline, without displaying a
  +     prompt.  */
  +  if (async_command_editing_p)
  +    rl_callback_handler_install (NULL, input_handler);

and tui_prep_terminal simply misses handling the case of a NULL
rl_prompt.

I also checked that readline's sources do similar checks.

gdb/
2014-07-24  Pedro Alves  <palves@redhat.com>

	* tui/tui-io.c (tui_prep_terminal): Handle NULL rl_prompt.
olajep pushed a commit to olajep/epiphany-binutils-gdb that referenced this pull request Oct 16, 2022
…nd crashes readline/GDB

Jan caught an intermittent GDB crash with the annota1.exp test:

 Starting program: .../gdb/testsuite/gdb.base/annota1 ^M
 [...]
 FAIL: gdb.base/annota1.exp: run until main breakpoint (timeout)
 [...]
 readline: readline_callback_read_char() called with no handler!^M
 ERROR: Process no longer exists

All we need to is to continue the inferior in the foreground, and type
a command while the inferior is running.  E.g.:

 (gdb) set annotate 2

 ▒▒pre-prompt
 (gdb)
 ▒▒prompt
 c

 ▒▒post-prompt
 Continuing.

 ▒▒starting

 ▒▒frames-invalid

 *inferior is running now*

 p 1<ret>

 readline: readline_callback_read_char() called with no handler!
 Aborted (core dumped)
 $


When we run a foreground execution command we call
target_terminal_inferior to stop GDB from processing input, and to put
the inferior's terminal settings in effect.  Then we tell readline to
hide the prompt with display_gdb_prompt, which clears readline's input
callback too.  When the target stops, we call target_terminal_ours,
which re-installs stdin in the event loop, and then we redisplay the
prompt, reinstalling the readline callbacks.

However, when annotations are in effect, the "frames-invalid"
annotation code calls target_terminal_ours after 'resume' had already
called target_terminal_inferior:

 (top-gdb) bt
 #0  0x000000000056b82f in annotate_frames_invalid () at gdb/annotate.c:219
 adapteva#1  0x000000000072e6cc in reinit_frame_cache () at gdb/frame.c:1705
 adapteva#2  0x0000000000594bb9 in registers_changed_ptid (ptid=...) at gdb/regcache.c:612
 adapteva#3  0x000000000064cca1 in target_resume (ptid=..., step=1, signal=GDB_SIGNAL_0) at gdb/target.c:2136
 adapteva#4  0x00000000005f57af in resume (step=1, sig=GDB_SIGNAL_0) at gdb/infrun.c:2263
 adapteva#5  0x00000000005f6051 in proceed (addr=18446744073709551615, siggnal=GDB_SIGNAL_DEFAULT, step=1) at gdb/infrun.c:2613

And then once we hide the prompt and remove readline's input handler
callback, we're in a bad state.  We end up with the target running
supposedly in the foreground, but with stdin still installed on the
event loop.  Any input then calls into readline, which aborts because
no rl_linefunc callback handler is installed:

 Program received signal SIGABRT, Aborted.
 0x0000003b36a35877 in __GI_raise (sig=sig@entry=6) at ../nptl/sysdeps/unix/sysv/linux/raise.c:56
 56        return INLINE_SYSCALL (tgkill, 3, pid, selftid, sig);

 (top-gdb) bt
 #0  0x0000003b36a35877 in __GI_raise (sig=sig@entry=6) at ../nptl/sysdeps/unix/sysv/linux/raise.c:56
 adapteva#1  0x0000003b36a36f68 in __GI_abort () at abort.c:89
 During symbol reading, debug info gives source 9 included from file at zero line 0.
 During symbol reading, debug info gives command-line macro definition with non-zero line 19: _STDC_PREDEF_H 1.
 adapteva#2  0x0000000000784a25 in rl_callback_read_char () at src/readline/callback.c:116
 adapteva#3  0x0000000000619111 in rl_callback_read_char_wrapper (client_data=0x0) at src/gdb/event-top.c:167
 adapteva#4  0x00000000006194e7 in stdin_event_handler (error=0, client_data=0x0) at src/gdb/event-top.c:373
 adapteva#5  0x00000000006180da in handle_file_event (data=...) at src/gdb/event-loop.c:763
 adapteva#6  0x00000000006175c1 in process_event () at src/gdb/event-loop.c:340
 adapteva#7  0x0000000000617688 in gdb_do_one_event () at src/gdb/event-loop.c:404
 adapteva#8  0x00000000006176d8 in start_event_loop () at src/gdb/event-loop.c:429
 adapteva#9  0x0000000000619143 in cli_command_loop (data=0x0) at src/gdb/event-top.c:182
 adapteva#10 0x000000000060f4c8 in current_interp_command_loop () at src/gdb/interps.c:318
 adapteva#11 0x0000000000610691 in captured_command_loop (data=0x0) at src/gdb/main.c:323
 #12 0x000000000060c385 in catch_errors (func=0x610676 <captured_command_loop>, func_args=0x0, errstring=0x900241 "", mask=RETURN_MASK_ALL)
     at src/gdb/exceptions.c:237
 #13 0x0000000000611b8f in captured_main (data=0x7fffffffd7b0) at src/gdb/main.c:1151
 #14 0x000000000060c385 in catch_errors (func=0x610a8e <captured_main>, func_args=0x7fffffffd7b0, errstring=0x900241 "", mask=RETURN_MASK_ALL)
     at src/gdb/exceptions.c:237
 #15 0x0000000000611bb8 in gdb_main (args=0x7fffffffd7b0) at src/gdb/main.c:1159
 #16 0x000000000045ef57 in main (argc=3, argv=0x7fffffffd8b8) at src/gdb/gdb.c:32

The fix is to make the annotation code call target_terminal_inferior
again after printing, if the inferior's settings were in effect.

While at it, when we're doing output only, instead of
target_terminal_ours, we should call target_terminal_ours_for_output.
The latter doesn't actually remove stdin from the event loop, and also
leaves SIGINT forwarded to the target.

New test included.

Tested on x86_64 Fedora 20, native and gdbserver.

gdb/
2014-10-17  Pedro Alves  <palves@redhat.com>

	PR gdb/17472
	* annotate.c (annotate_breakpoints_invalid): Use
	target_terminal_our_for_output instead of target_terminal_ours.
	Give back the terminal to the target.
	(annotate_frames_invalid): Likewise.

gdb/testsuite/
2014-10-17  Pedro Alves  <palves@redhat.com>

	PR gdb/17472
	* gdb.base/annota-input-while-running.c: New file.
	* gdb.base/annota-input-while-running.exp: New file.
olajep pushed a commit to olajep/epiphany-binutils-gdb that referenced this pull request Oct 16, 2022
If all threads in the target were already running when the user does
"c -a", nothing puts the inferior's terminal settings in effect and
removes stdin from the event loop, which we must when running a
foreground command.  The result is that user input afterwards crashes
readline/gdb:

 (gdb) start
 Temporary breakpoint 1 at 0x4005d4: file continue-all-already-running.c, line 23.
 Starting program: continue-all-already-running

 Temporary breakpoint 1, main () at continue-all-already-running.c:23
 23        sleep (10);
 (gdb) c -a&
 Continuing.
 (gdb) c -a
 Continuing.
 p 1
 readline: readline_callback_read_char() called with no handler!
 Aborted (core dumped)
 $

Backtrace:

 Program received signal SIGABRT, Aborted.
 0x0000003b36a35877 in __GI_raise (sig=sig@entry=6) at ../nptl/sysdeps/unix/sysv/linux/raise.c:56
 56        return INLINE_SYSCALL (tgkill, 3, pid, selftid, sig);
 (top-gdb) p 1
 $1 = 1
 (top-gdb) bt
 #0  0x0000003b36a35877 in __GI_raise (sig=sig@entry=6) at ../nptl/sysdeps/unix/sysv/linux/raise.c:56
 adapteva#1  0x0000003b36a36f68 in __GI_abort () at abort.c:89
 adapteva#2  0x0000000000784aa9 in rl_callback_read_char () at readline/callback.c:116
 adapteva#3  0x0000000000619181 in rl_callback_read_char_wrapper (client_data=0x0) at gdb/event-top.c:167
 adapteva#4  0x0000000000619557 in stdin_event_handler (error=0, client_data=0x0) at gdb/event-top.c:373
 adapteva#5  0x000000000061814a in handle_file_event (data=...) at gdb/event-loop.c:763
 adapteva#6  0x0000000000617631 in process_event () at gdb/event-loop.c:340
 adapteva#7  0x00000000006176f8 in gdb_do_one_event () at gdb/event-loop.c:404
 adapteva#8  0x0000000000617748 in start_event_loop () at gdb/event-loop.c:429
 adapteva#9  0x00000000006191b3 in cli_command_loop (data=0x0) at gdb/event-top.c:182
 adapteva#10 0x000000000060f538 in current_interp_command_loop () at gdb/interps.c:318
 adapteva#11 0x0000000000610701 in captured_command_loop (data=0x0) at gdb/main.c:323
 #12 0x000000000060c3f5 in catch_errors (func=0x6106e6 <captured_command_loop>, func_args=0x0, errstring=0x9002c1 "", mask=RETURN_MASK_ALL)
     at gdb/exceptions.c:237
 #13 0x0000000000611bff in captured_main (data=0x7fffffffd780) at gdb/main.c:1151
 #14 0x000000000060c3f5 in catch_errors (func=0x610afe <captured_main>, func_args=0x7fffffffd780, errstring=0x9002c1 "", mask=RETURN_MASK_ALL)
     at gdb/exceptions.c:237
 #15 0x0000000000611c28 in gdb_main (args=0x7fffffffd780) at gdb/main.c:1159
 #16 0x000000000045ef97 in main (argc=5, argv=0x7fffffffd888) at gdb/gdb.c:32
 (top-gdb)

Tested on x86_64 Fedora 20, native and gdbserver.

gdb/
2014-10-17  Pedro Alves  <palves@redhat.com>

	PR gdb/17300
	* infcmd.c (continue_1): If continuing all threads in the
	foreground, make sure the inferior's terminal settings are put in
	effect.

gdb/testsuite/
2014-10-17  Pedro Alves  <palves@redhat.com>

	PR gdb/17300
	* gdb.base/continue-all-already-running.c: New file.
	* gdb.base/continue-all-already-running.exp: New file.
olajep pushed a commit to olajep/epiphany-binutils-gdb that referenced this pull request Oct 16, 2022
When I run process-dies-while-detaching.exp with GDBserver, I see many
warnings printed by GDBserver,

ptrace(regsets_fetch_inferior_registers) PID=26183: No such process
ptrace(regsets_fetch_inferior_registers) PID=26183: No such process
ptrace(regsets_fetch_inferior_registers) PID=26184: No such process
ptrace(regsets_fetch_inferior_registers) PID=26184: No such process

regsets_fetch_inferior_registers is called when GDBserver resumes each
lwp.

 adapteva#2  0x0000000000428260 in regsets_fetch_inferior_registers (regsets_info=0x4690d0 <aarch64_regsets_info>, regcache=0x31832020)
    at /home/yao/SourceCode/gnu/gdb/git/gdb/gdbserver/linux-low.c:5412
 adapteva#3  0x00000000004070e8 in get_thread_regcache (thread=0x31832940, fetch=fetch@entry=1) at /home/yao/SourceCode/gnu/gdb/git/gdb/gdbserver/regcache.c:58
 adapteva#4  0x0000000000429c40 in linux_resume_one_lwp_throw (info=<optimized out>, signal=0, step=0, lwp=0x31832830)
    at /home/yao/SourceCode/gnu/gdb/git/gdb/gdbserver/linux-low.c:4463
 adapteva#5  linux_resume_one_lwp (lwp=0x31832830, step=<optimized out>, signal=<optimized out>, info=<optimized out>)
    at /home/yao/SourceCode/gnu/gdb/git/gdb/gdbserver/linux-low.c:4573

The is the case that threads are disappeared when GDB/GDBserver resumes
them.  We check errno for ESRCH, and don't print error messages, like
what we are doing in regsets_store_inferior_registers.

gdb/gdbserver:

2016-08-04  Yao Qi  <yao.qi@linaro.org>

	* linux-low.c (regsets_fetch_inferior_registers): Check
	errno is ESRCH or not.
olajep pushed a commit to olajep/epiphany-binutils-gdb that referenced this pull request Oct 16, 2022
… out value

With something like:

  struct A { int bitfield:4; } var;

If 'var' ends up wholly-optimized out, printing 'var.bitfield' crashes
gdb here:

 (top-gdb) bt
 #0  0x000000000058b89f in extract_unsigned_integer (addr=0x2 <error: Cannot access memory at address 0x2>, len=2, byte_order=BFD_ENDIAN_LITTLE)
     at /home/pedro/gdb/mygit/src/gdb/findvar.c:109
 adapteva#1  0x00000000005a187a in unpack_bits_as_long (field_type=0x16cff70, valaddr=0x0, bitpos=16, bitsize=12) at /home/pedro/gdb/mygit/src/gdb/value.c:3347
 adapteva#2  0x00000000005a1b9d in unpack_value_bitfield (dest_val=0x1b5d9d0, bitpos=16, bitsize=12, valaddr=0x0, embedded_offset=0, val=0x1b5d8d0)
     at /home/pedro/gdb/mygit/src/gdb/value.c:3441
 adapteva#3  0x00000000005a2a5f in value_fetch_lazy (val=0x1b5d9d0) at /home/pedro/gdb/mygit/src/gdb/value.c:3958
 adapteva#4  0x00000000005a10a7 in value_primitive_field (arg1=0x1b5d8d0, offset=0, fieldno=0, arg_type=0x16d04c0) at /home/pedro/gdb/mygit/src/gdb/value.c:3161
 adapteva#5  0x00000000005b01e5 in do_search_struct_field (name=0x1727c60 "bitfield", arg1=0x1b5d8d0, offset=0, type=0x16d04c0, looking_for_baseclass=0, result_ptr=0x7fffffffcaf8,
 [...]

unpack_value_bitfield is already optimized-out/unavailable -aware:

   (...) VALADDR points to the contents of VAL.  If the VAL's contents
   required to extract the bitfield from are unavailable/optimized
   out, DEST_VAL is correspondingly marked unavailable/optimized out.

however, it is not considering the case of the value having no
contents buffer at all, as can happen through
allocate_optimized_out_value.

gdb/ChangeLog:
2016-08-09  Pedro Alves  <palves@redhat.com>

	* value.c (unpack_value_bitfield): Skip unpacking if the parent
	has no contents buffer to begin with.

gdb/testsuite/ChangeLog:
2016-08-09  Pedro Alves  <palves@redhat.com>

	* gdb.dwarf2/bitfield-parent-optimized-out.exp: New file.
olajep pushed a commit to olajep/epiphany-binutils-gdb that referenced this pull request Oct 16, 2022
If I build gdb with -fsanitize=address and run tests, I get error,

malformed linespec error: unexpected colon^M
(gdb) PASS: gdb.linespec/ls-errs.exp: lang=C: break     :
break   :=================================================================^M
==3266==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x602000051451 at pc 0x2b5797a972a8 bp 0x7fffd8e0f3c0 sp 0x7fffd8e0f398^M
READ of size 2 at 0x602000051451 thread T0
    #0 0x2b5797a972a7 in __interceptor_strlen (/usr/lib/x86_64-linux-gnu/libasan.so.1+0x322a7)^M
    adapteva#1 0x7bd004 in compare_filenames_for_search(char const*, char const*) /home/yao/SourceCode/gnu/gdb/git/gdb/symtab.c:316^M
    adapteva#2 0x7bd310 in iterate_over_some_symtabs(char const*, char const*, int (*)(symtab*, void*), void*, compunit_symtab*, compunit_symtab*) /home/yao/SourceCode/gnu/gdb/git/gdb/symtab.c:411^M
    adapteva#3 0x7bd775 in iterate_over_symtabs(char const*, int (*)(symtab*, void*), void*) /home/yao/SourceCode/gnu/gdb/git/gdb/symtab.c:481^M
    adapteva#4 0x7bda15 in lookup_symtab(char const*) /home/yao/SourceCode/gnu/gdb/git/gdb/symtab.c:527^M
    adapteva#5 0x7d5e2a in make_file_symbol_completion_list_1 /home/yao/SourceCode/gnu/gdb/git/gdb/symtab.c:5635^M
    adapteva#6 0x7d61e1 in make_file_symbol_completion_list(char const*, char const*, char const*) /home/yao/SourceCode/gnu/gdb/git/gdb/symtab.c:5684^M
    adapteva#7 0x88dc06 in linespec_location_completer /home/yao/SourceCode/gnu/gdb/git/gdb/completer.c:288
....
0x602000051451 is located 0 bytes to the right of 1-byte region [0x602000051450,0x602000051451)^M
mallocated by thread T0 here:
    #0 0x2b5797ab97ef in __interceptor_malloc (/usr/lib/x86_64-linux-gnu/libasan.so.1+0x547ef)^M
    adapteva#1 0xbbfb8d in xmalloc /home/yao/SourceCode/gnu/gdb/git/gdb/common/common-utils.c:43^M
    adapteva#2 0x88dabd in linespec_location_completer /home/yao/SourceCode/gnu/gdb/git/gdb/completer.c:273^M
    adapteva#3 0x88e5ef in location_completer(cmd_list_element*, char const*, char const*) /home/yao/SourceCode/gnu/gdb/git/gdb/completer.c:531^M
    adapteva#4 0x8902e7 in complete_line_internal /home/yao/SourceCode/gnu/gdb/git/gdb/completer.c:964^

The code in question is here

       file_to_match = (char *) xmalloc (colon - text + 1);
       strncpy (file_to_match, text, colon - text + 1);

it is likely that file_to_match is not null-terminated.  The patch is
to strncpy 'colon - text' bytes and explicitly set '\0'.

gdb:

2016-08-19  Yao Qi  <yao.qi@linaro.org>

	* completer.c (linespec_location_completer): Make file_to_match
	null-terminated.
olajep pushed a commit to olajep/epiphany-binutils-gdb that referenced this pull request Oct 16, 2022
This patch fixes a problem that problem triggers if you start an
inferior, e.g., with the "start" command, in a UI created with the
new-ui command, and then run a foreground execution command in the
main UI.  Once the program stops for the latter command, typing in the
main UI no longer echoes back to the user.

The problem revolves around this:

- gdb_has_a_terminal computes its result lazily, on first call.

  that is what saves gdb's initial main UI terminal state (the UI
  associated with stdin):

          our_terminal_info.ttystate = serial_get_tty_state (stdin_serial);

  This is the state that target_terminal_ours() restores.

- In this scenario, the gdb_has_a_terminal function happens to be
  first ever called from within the target_terminal_init call in
  startup_inferior:

      (top-gdb) bt
      #0  gdb_has_a_terminal () at src/gdb/inflow.c:157
      adapteva#1  0x000000000079db22 in child_terminal_init_with_pgrp () at src/gdb/inflow.c:217
       [...]
      adapteva#4  0x000000000065bacb in target_terminal_init () at src/gdb/target.c:456
      adapteva#5  0x00000000004676d2 in startup_inferior () at src/gdb/fork-child.c:531
       [...]
      adapteva#7  0x000000000046b168 in linux_nat_create_inferior () at src/gdb/linux-nat.c:1112
       [...]
      adapteva#9  0x00000000005f20c9 in start_command (args=0x0, from_tty=1) at src/gdb/infcmd.c:657

If the command to start the inferior is issued on the main UI, then
readline will have deprepped the terminal when we reach the above, and
the problem doesn't appear.

If however the command is issued on a non-main UI, then when we reach
that gdb_has_a_terminal call, the main UI's terminal state is still
set to whatever readline has sets it to in rl_prep_terminal, which
happens to have echo disabled.  Later, when the following synchronous
execution command finishes, we'll call target_terminal_ours to restore
gdb's the main UI's terminal settings, and that restores the terminal
state with echo disabled...

Conceptually, the fix is to move the gdb_has_a_terminal call earlier,
to someplace during GDB initialization, before readline/ncurses have
had a chance to change terminal settings.  Turns out that
"set_initial_gdb_ttystate" is exactly such a place.

I say conceptually, because the fix actually inlines the
gdb_has_a_terminal part that saves the terminal state in
set_initial_gdb_ttystate and then simplifies gdb_has_a_terminal, since
there's no point in making gdb_has_a_terminal do lazy computation.

gdb/ChangeLog:
2016-08-23  Pedro Alves  <palves@redhat.com>

	PR gdb/20494
	* inflow.c (our_terminal_info, initial_gdb_ttystate): Update
	comments.
	(enum gdb_has_a_terminal_flag_enum, gdb_has_a_terminal_flag):
	Delete.
	(set_initial_gdb_ttystate): Record our_terminal_info here too,
	instead of ...
	(gdb_has_a_terminal): ... here.  Reimplement in terms of
	initial_gdb_ttystate.  Make static.
	* terminal.h (gdb_has_a_terminal): Delete declaration.
	(set_initial_gdb_ttystate): Add comment.
	* top.c (show_interactive_mode): Use input_interactive_p instead
	of gdb_has_a_terminal.

gdb/testsuite/ChangeLog:
2016-08-23  Pedro Alves  <palves@redhat.com>

	PR gdb/20494
	* gdb.base/new-ui-echo.c: New file.
	* gdb.base/new-ui-echo.exp: New file.
olajep pushed a commit to olajep/epiphany-binutils-gdb that referenced this pull request Oct 16, 2022
Even though this was supposedly in the gdb 7.2 timeframe, the testcase
in PR11094 crashes current GDB with a segfault:

  Program received signal SIGSEGV, Segmentation fault.
  0x00000000005ee894 in event_location_to_string (location=0x0) at
  src/gdb/location.c:412
  412       if (EL_STRING (location) == NULL)
  (top-gdb) bt
  #0  0x00000000005ee894 in event_location_to_string (location=0x0) at
  src/gdb/location.c:412
  adapteva#1  0x000000000057411a in print_breakpoint_location (b=0x18288e0, loc=0x0) at
  src/gdb/breakpoint.c:6201
  adapteva#2  0x000000000057483f in print_one_breakpoint_location (b=0x18288e0,
  loc=0x182cf10, loc_number=0, last_loc=0x7fffffffd258, allflag=1)
      at src/gdb/breakpoint.c:6473
  adapteva#3  0x00000000005751e1 in print_one_breakpoint (b=0x18288e0,
  last_loc=0x7fffffffd258, allflag=1) at
  src/gdb/breakpoint.c:6707
  adapteva#4  0x000000000057589c in breakpoint_1 (args=0x0, allflag=1, filter=0x0) at
  src/gdb/breakpoint.c:6947
  adapteva#5  0x0000000000575aa8 in maintenance_info_breakpoints (args=0x0, from_tty=0)
  at src/gdb/breakpoint.c:7026
  [...]

This is GDB trying to print the location spec of the JIT event
breakpoint, but that's an internal breakpoint without one.

If I add a NULL check, then we see that the JIT breakpoint is now
pending (because its location has shlib_disabled set):

  (gdb) maint info breakpoints
  Num     Type           Disp Enb Address            What
  [...]
  -8      jit events     keep y   <PENDING>           inf 1
  [...]

But that's incorrect.  GDB should have managed to recreate the JIT
breakpoint's location for the second run.  So the problem is
elsewhere.

The problem is that if the JIT loads at the same address on the second
run, we never recreate the JIT breakpoint, because we hit this early
return:

  static int
  jit_breakpoint_re_set_internal (struct gdbarch *gdbarch,
				  struct jit_program_space_data *ps_data)
  {
    [...]
    if (ps_data->cached_code_address == addr)
      return 0;

    [...]
      delete_breakpoint (ps_data->jit_breakpoint);
    [...]
    ps_data->jit_breakpoint = create_jit_event_breakpoint (gdbarch, addr);

Fix this by deleting the breakpoint and discarding the cached code
address when the objfile where the previous JIT breakpoint was found
is deleted/unloaded in the first place.

The test that was originally added for PR11094 doesn't trip on this
because:

  adapteva#1 - It doesn't test the case of the JIT descriptor's address _not_
       changing between reruns.

  adapteva#2 - And then it doesn't do "maint info breakpoints", or really
       anything with the JIT at all.

  adapteva#3 - and even then, to trigger the problem the JIT descriptor needs
       to be in a separate library, while the current test puts it in
       the main program.

The patch extends the test to cover all combinations of these
scenarios.

gdb/ChangeLog:
2016-10-06  Pedro Alves  <palves@redhat.com>

	* jit.c (free_objfile_data): Delete the JIT breakpoint and clear
	the cached code address.

gdb/testsuite/ChangeLog:
2016-10-06  Pedro Alves  <palves@redhat.com>

	* gdb.base/jit-simple-dl.c: New file.
	* gdb.base/jit-simple-jit.c: New file, factored out from ...
	* gdb.base/jit-simple.c: ... this.
	* gdb.base/jit-simple.exp (jit_run): Delete.
	(build_jit): New proc.
	(jit_test_reread): Recompile either the main program or the shared
	library, depending on what is being tested.  Skip changing address
	if caller wants to.  Compare before/after addresses.  If testing
	standalone, explicitly load the binary.  Test "maint info
	breakpoints".
	(top level): Add "standalone vs shared lib" and "change address"
	vs "same address" axes.
olajep pushed a commit to olajep/epiphany-binutils-gdb that referenced this pull request Oct 16, 2022
When loading a file using the file command on macOS, we get:

    $ ./gdb -nx --data-directory=data-directory -q -ex "file ./test"
    Reading symbols from ./test...
    Reading symbols from /Users/smarchi/build/binutils-gdb/gdb/test.dSYM/Contents/Resources/DWARF/test...
    /Users/smarchi/src/binutils-gdb/gdb/thread.c:72: internal-error: struct thread_info *inferior_thread(): Assertion `current_thread_ != nullptr' failed.
    A problem internal to GDB has been detected,
    further debugging may prove unreliable.
    Quit this debugging session? (y or n)

The backtrace is:

    * frame #0: 0x0000000101fcb826 gdb`internal_error(file="/Users/smarchi/src/binutils-gdb/gdb/thread.c", line=72, fmt="%s: Assertion `%s' failed.") at errors.cc:52:3
      frame adapteva#1: 0x00000001018a2584 gdb`inferior_thread() at thread.c:72:3
      frame adapteva#2: 0x0000000101469c09 gdb`get_current_regcache() at regcache.c:421:31
      frame adapteva#3: 0x00000001015f9812 gdb`darwin_solib_get_all_image_info_addr_at_init(info=0x0000603000006d00) at solib-darwin.c:464:34
      frame adapteva#4: 0x00000001015f7a04 gdb`darwin_solib_create_inferior_hook(from_tty=1) at solib-darwin.c:515:5
      frame adapteva#5: 0x000000010161205e gdb`solib_create_inferior_hook(from_tty=1) at solib.c:1200:3
      frame adapteva#6: 0x00000001016d8f76 gdb`symbol_file_command(args="./test", from_tty=1) at symfile.c:1650:7
      frame adapteva#7: 0x0000000100abab17 gdb`file_command(arg="./test", from_tty=1) at exec.c:555:3
      frame adapteva#8: 0x00000001004dc799 gdb`do_const_cfunc(c=0x000061100000c340, args="./test", from_tty=1) at cli-decode.c:102:3
      frame adapteva#9: 0x00000001004ea042 gdb`cmd_func(cmd=0x000061100000c340, args="./test", from_tty=1) at cli-decode.c:2160:7
      frame adapteva#10: 0x00000001018d4f59 gdb`execute_command(p="t", from_tty=1) at top.c:674:2
      frame adapteva#11: 0x0000000100eee430 gdb`catch_command_errors(command=(gdb`execute_command(char const*, int) at top.c:561), arg="file ./test", from_tty=1, do_bp_actions=true)(char const*, int), char const*, int, bool) at main.c:523:7
      frame #12: 0x0000000100eee902 gdb`execute_cmdargs(cmdarg_vec=0x00007ffeefbfeba0 size=1, file_type=CMDARG_FILE, cmd_type=CMDARG_COMMAND, ret=0x00007ffeefbfec20) at main.c:618:9
      frame #13: 0x0000000100eed3a4 gdb`captured_main_1(context=0x00007ffeefbff780) at main.c:1322:3
      frame #14: 0x0000000100ee810d gdb`captured_main(data=0x00007ffeefbff780) at main.c:1343:3
      frame #15: 0x0000000100ee8025 gdb`gdb_main(args=0x00007ffeefbff780) at main.c:1368:7
      frame #16: 0x00000001000044f1 gdb`main(argc=6, argv=0x00007ffeefbff8a0) at gdb.c:32:10
      frame #17: 0x00007fff20558f5d libdyld.dylib`start + 1

The solib_create_inferior_hook call in symbol_file_command was added by
commit ea142fb ("Fix breakpoints on file reloads for PIE
binaries").  It causes solib_create_inferior_hook to be called while
the inferior is not running, which darwin_solib_create_inferior_hook
does not expect.  darwin_solib_get_all_image_info_addr_at_init, in
particular, assumes that there is a current thread, as it tries to get
the current thread's regcache.

Fix it by adding a target_has_execution check and returning early.  Note
that there is a similar check in svr4_solib_create_inferior_hook.

gdb/ChangeLog:

	* solib-darwin.c (darwin_solib_create_inferior_hook): Return
	early if no execution.

Change-Id: Ia11dd983a1e29786e5ce663d0fcaa6846dc611bb
olajep pushed a commit to olajep/epiphany-binutils-gdb that referenced this pull request Oct 16, 2022
Commit 408f668 ("detach in all-stop
with threads running") regressed "detach" with "target remote":

 (gdb) detach
 Detaching from program: target:/any/program, process 3671843
 Detaching from process 3671843
 Ending remote debugging.
 [Inferior 1 (process 3671843) detached]
 In main
 terminate called after throwing an instance of 'gdb_exception_error'
 Aborted (core dumped)

Here's the exception above being thrown:

 (top-gdb) bt
 #0  throw_error (error=TARGET_CLOSE_ERROR, fmt=0x555556035588 "Remote connection closed") at src/gdbsupport/common-exceptions.cc:222
 adapteva#1  0x0000555555bbaa46 in remote_target::readchar (this=0x555556a11040, timeout=10000) at src/gdb/remote.c:9440
 adapteva#2  0x0000555555bbb9e5 in remote_target::getpkt_or_notif_sane_1 (this=0x555556a11040, buf=0x555556a11058, forever=0, expecting_notif=0, is_notif=0x0) at src/gdb/remote.c:9928
 adapteva#3  0x0000555555bbbda9 in remote_target::getpkt_sane (this=0x555556a11040, buf=0x555556a11058, forever=0) at src/gdb/remote.c:10030
 adapteva#4  0x0000555555bc0e75 in remote_target::remote_hostio_send_command (this=0x555556a11040, command_bytes=13, which_packet=14, remote_errno=0x7fffffffcfd0, attachment=0x0, attachment_len=0x0) at src/gdb/remote.c:12137
 adapteva#5  0x0000555555bc1b6c in remote_target::remote_hostio_close (this=0x555556a11040, fd=8, remote_errno=0x7fffffffcfd0) at src/gdb/remote.c:12455
 adapteva#6  0x0000555555bc1bb4 in remote_target::fileio_close (During symbol reading: .debug_line address at offset 0x64f417 is 0 [in module build/gdb/gdb]
 this=0x555556a11040, fd=8, remote_errno=0x7fffffffcfd0) at src/gdb/remote.c:12462
 adapteva#7  0x0000555555c9274c in target_fileio_close (fd=3, target_errno=0x7fffffffcfd0) at src/gdb/target.c:3365
 adapteva#8  0x000055555595a19d in gdb_bfd_iovec_fileio_close (abfd=0x555556b9f8a0, stream=0x555556b11530) at src/gdb/gdb_bfd.c:439
 adapteva#9  0x0000555555e09e3f in opncls_bclose (abfd=0x555556b9f8a0) at src/bfd/opncls.c:599
 adapteva#10 0x0000555555e0a2c7 in bfd_close_all_done (abfd=0x555556b9f8a0) at src/bfd/opncls.c:847
 adapteva#11 0x0000555555e0a27a in bfd_close (abfd=0x555556b9f8a0) at src/bfd/opncls.c:814
 #12 0x000055555595a9d3 in gdb_bfd_close_or_warn (abfd=0x555556b9f8a0) at src/gdb/gdb_bfd.c:626
 #13 0x000055555595ad29 in gdb_bfd_unref (abfd=0x555556b9f8a0) at src/gdb/gdb_bfd.c:715
 #14 0x0000555555ae4730 in objfile::~objfile (this=0x555556515540, __in_chrg=<optimized out>) at src/gdb/objfiles.c:573
 #15 0x0000555555ae955a in std::_Sp_counted_ptr<objfile*, (__gnu_cxx::_Lock_policy)2>::_M_dispose (this=0x555556c20db0) at /usr/include/c++/9/bits/shared_ptr_base.h:377
 #16 0x000055555572b7c8 in std::_Sp_counted_base<(__gnu_cxx::_Lock_policy)2>::_M_release (this=0x555556c20db0) at /usr/include/c++/9/bits/shared_ptr_base.h:155
 #17 0x00005555557263c3 in std::__shared_count<(__gnu_cxx::_Lock_policy)2>::~__shared_count (this=0x555556bf0588, __in_chrg=<optimized out>) at /usr/include/c++/9/bits/shared_ptr_base.h:730
 #18 0x0000555555ae745e in std::__shared_ptr<objfile, (__gnu_cxx::_Lock_policy)2>::~__shared_ptr (this=0x555556bf0580, __in_chrg=<optimized out>) at /usr/include/c++/9/bits/shared_ptr_base.h:1169
 #19 0x0000555555ae747e in std::shared_ptr<objfile>::~shared_ptr (this=0x555556bf0580, __in_chrg=<optimized out>) at /usr/include/c++/9/bits/shared_ptr.h:103
 #20 0x0000555555b1c1dc in __gnu_cxx::new_allocator<std::_List_node<std::shared_ptr<objfile> > >::destroy<std::shared_ptr<objfile> > (this=0x5555564cdd60, __p=0x555556bf0580) at /usr/include/c++/9/ext/new_allocator.h:153
 #21 0x0000555555b1bb1d in std::allocator_traits<std::allocator<std::_List_node<std::shared_ptr<objfile> > > >::destroy<std::shared_ptr<objfile> > (__a=..., __p=0x555556bf0580) at /usr/include/c++/9/bits/alloc_traits.h:497
 #22 0x0000555555b1b73e in std::__cxx11::list<std::shared_ptr<objfile>, std::allocator<std::shared_ptr<objfile> > >::_M_erase (this=0x5555564cdd60, __position=std::shared_ptr<objfile> (expired, weak count 1) = {get() = 0x555556515540}) at /usr/include/c++/9/bits/stl_list.h:1921
 #23 0x0000555555b1afeb in std::__cxx11::list<std::shared_ptr<objfile>, std::allocator<std::shared_ptr<objfile> > >::erase (this=0x5555564cdd60, __position=std::shared_ptr<objfile> (expired, weak count 1) = {get() = 0x555556515540}) at /usr/include/c++/9/bits/list.tcc:158
 #24 0x0000555555b19576 in program_space::remove_objfile (this=0x5555564cdd20, objfile=0x555556515540) at src/gdb/progspace.c:210
 #25 0x0000555555ae4502 in objfile::unlink (this=0x555556515540) at src/gdb/objfiles.c:487
 #26 0x0000555555ae5a12 in objfile_purge_solibs () at src/gdb/objfiles.c:875
 #27 0x0000555555c09686 in no_shared_libraries (ignored=0x0, from_tty=1) at src/gdb/solib.c:1236
 #28 0x00005555559e3f5f in detach_command (args=0x0, from_tty=1) at src/gdb/infcmd.c:2769

So frame #28 already detached the remote process, and then we're
purging the shared libraries.  GDB had opened remote shared libraries
via the target: sysroot, so it tries closing them.  GDBserver is
tearing down already, so remote communication breaks down and we close
the remote target and throw TARGET_CLOSE_ERROR.

Note frame #14:

 #14 0x0000555555ae4730 in objfile::~objfile (this=0x555556515540, __in_chrg=<optimized out>) at src/gdb/objfiles.c:573

That's a dtor, thus noexcept.  That's the reason for the
std::terminate.

Stepping back a bit, why do we still have open remote files if we've
managed to detach already, and, we're debugging with "target remote"?
The reason is that commit 408f668
makes detach_command hold a reference to the target, so the remote
target won't be finally closed until frame #28 returns.  It's closing
the target that invalidates target file I/O handles.

This commit fixes the issue by not relying on target_close to
invalidate the target file I/O handles, instead invalidate them
immediately in remote_unpush_target.  So when GDB purges the solibs,
and we end up in target_fileio_close (frame adapteva#7 above), there's nothing
to do, and we don't try to talk with the remote target anymore.

The regression isn't seen when testing with
--target_board=native-gdbserver, because that does "set sysroot" to
disable the "target:" sysroot, for test run speed reasons.  So this
commit adds a testcase that explicitly tests detach with "set sysroot
target:".

gdb/ChangeLog:
yyyy-mm-dd  Pedro Alves  <pedro@palves.net>

	PR gdb/28080
	* remote.c (remote_unpush_target): Invalidate file I/O target
	handles.
	* target.c (fileio_handles_invalidate_target): Make extern.
	* target.h (fileio_handles_invalidate_target): Declare.

gdb/testsuite/ChangeLog:
yyyy-mm-dd  Pedro Alves  <pedro@palves.net>

	PR gdb/28080
	* gdb.base/detach-sysroot-target.exp: New.
	* gdb.base/detach-sysroot-target.c: New.

Reported-By: Jonah Graham <jonah@kichwacoders.com>

Change-Id: I851234910172f42a1b30e731161376c344d2727d
olajep pushed a commit to olajep/epiphany-binutils-gdb that referenced this pull request Oct 16, 2022
…080)

Before PR gdb/28080 was fixed by the previous patch, GDB was crashing
like this:

 (gdb) detach
 Detaching from program: target:/any/program, process 3671843
 Detaching from process 3671843
 Ending remote debugging.
 [Inferior 1 (process 3671843) detached]
 In main
 terminate called after throwing an instance of 'gdb_exception_error'
 Aborted (core dumped)

Here's the exception above being thrown:

 (top-gdb) bt
 #0  throw_error (error=TARGET_CLOSE_ERROR, fmt=0x555556035588 "Remote connection closed") at src/gdbsupport/common-exceptions.cc:222
 adapteva#1  0x0000555555bbaa46 in remote_target::readchar (this=0x555556a11040, timeout=10000) at src/gdb/remote.c:9440
 adapteva#2  0x0000555555bbb9e5 in remote_target::getpkt_or_notif_sane_1 (this=0x555556a11040, buf=0x555556a11058, forever=0, expecting_notif=0, is_notif=0x0) at src/gdb/remote.c:9928
 adapteva#3  0x0000555555bbbda9 in remote_target::getpkt_sane (this=0x555556a11040, buf=0x555556a11058, forever=0) at src/gdb/remote.c:10030
 adapteva#4  0x0000555555bc0e75 in remote_target::remote_hostio_send_command (this=0x555556a11040, command_bytes=13, which_packet=14, remote_errno=0x7fffffffcfd0, attachment=0x0, attachment_len=0x0) at src/gdb/remote.c:12137
 adapteva#5  0x0000555555bc1b6c in remote_target::remote_hostio_close (this=0x555556a11040, fd=8, remote_errno=0x7fffffffcfd0) at src/gdb/remote.c:12455
 adapteva#6  0x0000555555bc1bb4 in remote_target::fileio_close (During symbol reading: .debug_line address at offset 0x64f417 is 0 [in module build/gdb/gdb]
 this=0x555556a11040, fd=8, remote_errno=0x7fffffffcfd0) at src/gdb/remote.c:12462
 adapteva#7  0x0000555555c9274c in target_fileio_close (fd=3, target_errno=0x7fffffffcfd0) at src/gdb/target.c:3365
 adapteva#8  0x000055555595a19d in gdb_bfd_iovec_fileio_close (abfd=0x555556b9f8a0, stream=0x555556b11530) at src/gdb/gdb_bfd.c:439
 adapteva#9  0x0000555555e09e3f in opncls_bclose (abfd=0x555556b9f8a0) at src/bfd/opncls.c:599
 adapteva#10 0x0000555555e0a2c7 in bfd_close_all_done (abfd=0x555556b9f8a0) at src/bfd/opncls.c:847
 adapteva#11 0x0000555555e0a27a in bfd_close (abfd=0x555556b9f8a0) at src/bfd/opncls.c:814
 #12 0x000055555595a9d3 in gdb_bfd_close_or_warn (abfd=0x555556b9f8a0) at src/gdb/gdb_bfd.c:626
 #13 0x000055555595ad29 in gdb_bfd_unref (abfd=0x555556b9f8a0) at src/gdb/gdb_bfd.c:715
 #14 0x0000555555ae4730 in objfile::~objfile (this=0x555556515540, __in_chrg=<optimized out>) at src/gdb/objfiles.c:573
 #15 0x0000555555ae955a in std::_Sp_counted_ptr<objfile*, (__gnu_cxx::_Lock_policy)2>::_M_dispose (this=0x555556c20db0) at /usr/include/c++/9/bits/shared_ptr_base.h:377
 #16 0x000055555572b7c8 in std::_Sp_counted_base<(__gnu_cxx::_Lock_policy)2>::_M_release (this=0x555556c20db0) at /usr/include/c++/9/bits/shared_ptr_base.h:155
 #17 0x00005555557263c3 in std::__shared_count<(__gnu_cxx::_Lock_policy)2>::~__shared_count (this=0x555556bf0588, __in_chrg=<optimized out>) at /usr/include/c++/9/bits/shared_ptr_base.h:730
 #18 0x0000555555ae745e in std::__shared_ptr<objfile, (__gnu_cxx::_Lock_policy)2>::~__shared_ptr (this=0x555556bf0580, __in_chrg=<optimized out>) at /usr/include/c++/9/bits/shared_ptr_base.h:1169
 #19 0x0000555555ae747e in std::shared_ptr<objfile>::~shared_ptr (this=0x555556bf0580, __in_chrg=<optimized out>) at /usr/include/c++/9/bits/shared_ptr.h:103
 #20 0x0000555555b1c1dc in __gnu_cxx::new_allocator<std::_List_node<std::shared_ptr<objfile> > >::destroy<std::shared_ptr<objfile> > (this=0x5555564cdd60, __p=0x555556bf0580) at /usr/include/c++/9/ext/new_allocator.h:153
 #21 0x0000555555b1bb1d in std::allocator_traits<std::allocator<std::_List_node<std::shared_ptr<objfile> > > >::destroy<std::shared_ptr<objfile> > (__a=..., __p=0x555556bf0580) at /usr/include/c++/9/bits/alloc_traits.h:497
 #22 0x0000555555b1b73e in std::__cxx11::list<std::shared_ptr<objfile>, std::allocator<std::shared_ptr<objfile> > >::_M_erase (this=0x5555564cdd60, __position=std::shared_ptr<objfile> (expired, weak count 1) = {get() = 0x555556515540}) at /usr/include/c++/9/bits/stl_list.h:1921
 #23 0x0000555555b1afeb in std::__cxx11::list<std::shared_ptr<objfile>, std::allocator<std::shared_ptr<objfile> > >::erase (this=0x5555564cdd60, __position=std::shared_ptr<objfile> (expired, weak count 1) = {get() = 0x555556515540}) at /usr/include/c++/9/bits/list.tcc:158
 #24 0x0000555555b19576 in program_space::remove_objfile (this=0x5555564cdd20, objfile=0x555556515540) at src/gdb/progspace.c:210
 #25 0x0000555555ae4502 in objfile::unlink (this=0x555556515540) at src/gdb/objfiles.c:487
 #26 0x0000555555ae5a12 in objfile_purge_solibs () at src/gdb/objfiles.c:875
 #27 0x0000555555c09686 in no_shared_libraries (ignored=0x0, from_tty=1) at src/gdb/solib.c:1236
 #28 0x00005555559e3f5f in detach_command (args=0x0, from_tty=1) at src/gdb/infcmd.c:2769

Note frame #14:

 #14 0x0000555555ae4730 in objfile::~objfile (this=0x555556515540, __in_chrg=<optimized out>) at src/gdb/objfiles.c:573

That's a dtor, thus noexcept.  That's the reason for the
std::terminate.

The previous patch fixed things such that the exception above isn't
thrown anymore.  However, it's possible that e.g., the remote
connection drops just while a user types "nosharedlibrary", or some
other reason that leads to objfile::~objfile, and then we end up the
same std::terminate problem.

Also notice that frames adapteva#9-adapteva#11 are BFD frames:

 adapteva#9  0x0000555555e09e3f in opncls_bclose (abfd=0x555556bc27e0) at src/bfd/opncls.c:599
 adapteva#10 0x0000555555e0a2c7 in bfd_close_all_done (abfd=0x555556bc27e0) at src/bfd/opncls.c:847
 adapteva#11 0x0000555555e0a27a in bfd_close (abfd=0x555556bc27e0) at src/bfd/opncls.c:814

BFD is written in C and thus throwing exceptions over such frames may
either not clean up properly, or, may abort if bfd is not compiled
with -fasynchronous-unwind-tables (x86-64 defaults that on, but not
all GCC ports do).

Thus frame adapteva#8 seems like a good place to swallow exceptions.  More so
since in this spot we already ignore target_fileio_close return
errors.  That's what this commit does.  Without the previous fix, we'd
see:

 (gdb) detach
 Detaching from program: target:/any/program, process 2197701
 Ending remote debugging.
 [Inferior 1 (process 2197701) detached]
 warning: cannot close "target:/lib64/ld-linux-x86-64.so.2": Remote connection closed

Note it prints a warning, which would still be a regression compared
to GDB 10, if it weren't for the previous fix.

gdb/ChangeLog:
yyyy-mm-dd  Pedro Alves  <pedro@palves.net>

	PR gdb/28080
	* gdb_bfd.c (gdb_bfd_close_warning): New.
	(gdb_bfd_iovec_fileio_close): Wrap target_fileio_close in
	try/catch and print warning on exception.
	(gdb_bfd_close_or_warn): Use gdb_bfd_close_warning.

Change-Id: Ic7a26ddba0a4444e3377b0e7c1c89934a84545d7
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants