Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added uniqueness of initial and final objects #601

Merged
merged 1 commit into from
Sep 20, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions Cubical/Categories/Category/Base.agda
Original file line number Diff line number Diff line change
Expand Up @@ -85,6 +85,11 @@ record isUnivalent (C : Precategory ℓ ℓ') : Type (ℓ-max ℓ ℓ') where
univEquiv : ∀ (x y : C .ob) → (x ≡ y) ≃ (CatIso x y)
univEquiv x y = (pathToIso {C = C} x y) , (univ x y)

-- The function extracting paths from category-theoretic isomorphisms.
CatIsoToPath : {x y : C .ob} (p : CatIso x y) → x ≡ y
CatIsoToPath {x = x} {y = y} p =
equivFun (invEquiv (univEquiv x y)) p

open isUnivalent public

-- Opposite Categories
Expand Down
62 changes: 62 additions & 0 deletions Cubical/Categories/Limits/Terminal.agda
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@ module Cubical.Categories.Limits.Terminal where

open import Cubical.Foundations.Prelude
open import Cubical.Data.Sigma
open import Cubical.Foundations.HLevels
-- open import Cubical.Categories.Limits.Base
open import Cubical.Categories.Category
open import Cubical.Categories.Functor
Expand All @@ -21,5 +22,66 @@ module _ (C : Precategory ℓ ℓ') where
isFinal : (x : ob) → Type (ℓ-max ℓ ℓ')
isFinal x = ∀ (y : ob) → isContr (C [ y , x ])

hasInitialOb : Type (ℓ-max ℓ ℓ')
hasInitialOb = Σ[ x ∈ ob ] isInitial x

hasFinalOb : Type (ℓ-max ℓ ℓ')
hasFinalOb = Σ[ x ∈ ob ] isFinal x

-- Initiality of an object is a proposition.
isPropIsInitial : (x : ob) → isProp (isInitial x)
isPropIsInitial x = isPropΠ λ y → isPropIsContr

-- Objects that are initial are isomorphic.
isInitialToIso : {x y : ob} (hx : isInitial x) (hy : isInitial y) →
CatIso {C = C} x y
isInitialToIso {x = x} {y = y} hx hy =
let x→y : C [ x , y ]
x→y = fst (hx y) -- morphism forwards
y→x : C [ y , x ]
y→x = fst (hy x) -- morphism backwards
x→y→x : x→y ⋆⟨ C ⟩ y→x ≡ id x
x→y→x = isContr→isProp (hx x) _ _ -- compose to id by uniqueness
y→x→y : y→x ⋆⟨ C ⟩ x→y ≡ id y
y→x→y = isContr→isProp (hy y) _ _ -- similar.
in catiso x→y y→x y→x→y x→y→x

open isUnivalent

-- The type of initial objects of a univalent precategory is a proposition,
-- i.e. all initial objects are equal.
isPropInitial : (hC : isUnivalent C) → isProp (hasInitialOb)
isPropInitial hC x y =
-- Being initial is a prop ∴ Suffices equal as objects in C.
Σ≡Prop (isPropIsInitial)
-- C is univalent ∴ Suffices isomorphic as objects in C.
(CatIsoToPath hC (isInitialToIso (snd x) (snd y)))

-- Now the dual argument for final objects.

-- Finality of an object is a proposition.
isPropIsFinal : (x : ob) → isProp (isFinal x)
isPropIsFinal x = isPropΠ λ y → isPropIsContr

-- Objects that are initial are isomorphic.
isFinalToIso : {x y : ob} (hx : isFinal x) (hy : isFinal y) →
CatIso {C = C} x y
isFinalToIso {x = x} {y = y} hx hy =
let x→y : C [ x , y ]
x→y = fst (hy x) -- morphism forwards
y→x : C [ y , x ]
y→x = fst (hx y) -- morphism backwards
x→y→x : x→y ⋆⟨ C ⟩ y→x ≡ id x
x→y→x = isContr→isProp (hx x) _ _ -- compose to id by uniqueness
y→x→y : y→x ⋆⟨ C ⟩ x→y ≡ id y
y→x→y = isContr→isProp (hy y) _ _ -- similar.
in catiso x→y y→x y→x→y x→y→x

-- The type of final objects of a univalent precategory is a proposition,
-- i.e. all final objects are equal.
isPropFinal : (hC : isUnivalent C) → isProp (hasFinalOb)
isPropFinal hC x y =
-- Being final is a prop ∴ Suffices equal as objects in C.
Σ≡Prop (isPropIsFinal)
-- C is univalent ∴ Suffices isomorphic as objects in C.
(CatIsoToPath hC (isFinalToIso (snd x) (snd y)))