Skip to content

aiboxlab-pne/popro

Repository files navigation

popro

Documentation Status

A population projection engine

Features

  • Calculates population projection segmented by age over the years
    • Methodology:
    • Overview:
      • Inputs:
        • Specific year census dataset (place, age, population)
        • Dataset of people born over the years (year, place, births)
        • Projected population dataset not segmented by age over the years (year, place, population)
      • Output:
        • Population projection segmented by age dataset (year, place, age, population)
        • Errors report on combination of "place, age, year" unable to forecast (year, place, age, error_msg)

Usage

First let's generate Input CSV files to serve as a sample.

import csv

def write_csv(file_path, list_data):
   with open(file_path, 'w', encoding='UTF8', newline='') as f:
      writer = csv.writer(f)
      for line in list_data:
            writer.writerow(line)

data_birth = [['births', 'place', 'year'],
              [102,'ny',2011],
              [116,'ny',2012],
              [94,'ny',2013],
              [123,'ny',2014],
              [156,'ny',2015]]

data_census = [['age', 'population', 'place', 'year'],
               [0, 100,  'ny', 2010],
               [1, 110,  'ny', 2010],
               [2, 105,  'ny', 2010],
               [3, 102,  'ny', 2010]]

data_population = [['population', 'place', 'year'],
                   [2010, 'ny', 2010],
                   [2100, 'ny', 2011],
                   [2050, 'ny', 2012],
                   [2040, 'ny', 2013],
                   [2090, 'ny', 2014],
                   [1950, 'ny', 2015]]

write_csv(file_path='births.csv', list_data=data_birth)
write_csv(file_path='census.csv', list_data=data_census)
write_csv(file_path='population.csv', list_data=data_population)

Now let's import the lib Popro and generate our projection engine.

from popro import popro

dict_input = {'path_census': 'census.csv', 'path_births': 'births.csv', 'path_population': 'population.csv', 'year_census': 2010}
engine = popro.Popro(dict_input)

We are ready! Let's start by doing some punctual projections of year, age and place.

First we will try with an age and year whose birth of the group is prior to the census.

engine.project(year=2012, place='ny', age=3, verbose=True)
pop_ny_2010_age_1 * (pop_ny_2012 / pop_ny_2010)
110 * (2050 / 2010)

112.18905472636816

Now let's find out the projection for a group born after the census.

engine.project(year=2015, place='ny', age=4, verbose=True)
birth_ny_year_2011 * (pop_ny_2015 / pop_ny_2011)
102 * (1950 / 2100)

94.71428571428572

Finally we will generate a report with all possible combinations of year, age and place.

engine.project_all()
[{'year': 2011, 'place': 'ny', 'age': 0, 'quantity': 102.0},
 {'year': 2011, 'place': 'ny', 'age': 1, 'quantity': 104.4776119402985},
 {'year': 2011, 'place': 'ny', 'age': 2, 'quantity': 114.92537313432835},
 {'year': 2011, 'place': 'ny', 'age': 3, 'quantity': 109.70149253731343},
 {'year': 2012, 'place': 'ny', 'age': 0, 'quantity': 116.0},
 {'year': 2012, 'place': 'ny', 'age': 1, 'quantity': 99.57142857142857},
 {'year': 2012, 'place': 'ny', 'age': 2, 'quantity': 101.99004975124377},
 {'year': 2012, 'place': 'ny', 'age': 3, 'quantity': 112.18905472636816},
 {'year': 2013, 'place': 'ny', 'age': 0, 'quantity': 94.0},
 {'year': 2013, 'place': 'ny', 'age': 1, 'quantity': 115.43414634146342},
 {'year': 2013, 'place': 'ny', 'age': 2, 'quantity': 99.08571428571429},
 {'year': 2013, 'place': 'ny', 'age': 3, 'quantity': 101.49253731343283},
 {'year': 2014, 'place': 'ny', 'age': 0, 'quantity': 123.0},
 {'year': 2014, 'place': 'ny', 'age': 1, 'quantity': 96.30392156862744},
 {'year': 2014, 'place': 'ny', 'age': 2, 'quantity': 118.26341463414634},
 {'year': 2014, 'place': 'ny', 'age': 3, 'quantity': 101.51428571428572},
 {'year': 2015, 'place': 'ny', 'age': 0, 'quantity': 156.0},
 {'year': 2015, 'place': 'ny', 'age': 1, 'quantity': 114.76076555023923},
 {'year': 2015, 'place': 'ny', 'age': 2, 'quantity': 89.8529411764706},
 {'year': 2015, 'place': 'ny', 'age': 3, 'quantity': 110.34146341463415}]

Cool, but it would be better to export to a CSV, wouldn't it?

engine.project_all(output_report_projection_path='projection_report.csv')

Report generated!

CLI

It is also possible to make projections via command line. Let's repeat the same projections:

$ popro -i path_census,census.csv -i path_births,births.csv -i path_population,population.csv -i year_census,2010 --year 2012 --place ny --age 3
112.18905472636816
$ popro -i path_census,census.csv -i path_births,births.csv -i path_population,population.csv -i year_census,2010 --year 2015 --place ny --age 4
94.71428571428572
$ popro -i path_census,census.csv -i path_births,births.csv -i path_population,population.csv -i year_census,2010 --output projection_report.csv