Skip to content

Lab 3 CCS Project Files for EE 443 DSP Capstone at the UW (Spring 2018)

License

Notifications You must be signed in to change notification settings

aidanjohnson/EE-443-Lab3

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

EE 443 Lab 3

GMM Library: https://github.com/snitish/libgmm SVM Library: https://www.csie.ntu.edu.tw/~cjlin/libsvm/

Problem 1: (Matlab) MFCC

Status: Complete

  • getMFCC.m
  • Frame sounds using A=21ms windows, B=10ms shift, and A-B=11ms of overlapping. Generate 13 MFCC coefficients for every frame. (4 seconds of sounds will generate 380 frames, that is the sample will have 380x13 MFCC coefficients matrix). Plot the 380x13 MFCC coefficients for all three Bird sounds in Matlab.

Problem 2: (Matlab) Training GMM using MFCC features

Status: Complete

  • gmm_traning.m
  • prints to txt means, variances, weights
  • Find the GMM parameters of the features found in Problem 1 to cluster the features.

GMM parameters: In Matlab, 'CovarianceType', 'diagonal' to generate k times D covariances, where k is the number of classes, and D is the number of features.

GMModel = fitgmdist(X,k,'CovarianceType','diagonal');
Matlab gmm.c
Means GMModel.mu GMM.means
Variances GMModel.Sigma GMM.covars
Weights GMModel.PComponents GMM.weights

Problem 3: (LCDK) Classification of Bird sound using GMM

Status: Complete

  • correctly (most of the time) IDs bluejay and dove; duck correctly IDed
  • gmm_write.m
  • lab3_problem3 directory (main.c & ISRs.c)--gmm.h array lengths for means, covars, P(k|x) changed to 39; not sure why JP hard coded it and changed it from the memory allocation performed by the original.
  • Use GMM model trained in Problem 2 to classify the Bird sound received through Line input of LCDK.

Problem 4: (Matlab) Training SVM for Bird sound classification

Status: Complete

  • svm_training.m
  • Train the SVM model using the features found in Problem 1.

SVM parameters: In Matlab, 'SaveSupportVectors', 'on' helps to save the support vectors in a SVM model.

t = templateSVM('SaveSupportVectors','on')
Mdl = fitcecoc(X,Y,'Learners',t);
Matlab svm.cpp
Number of Classes 3 model->nr_class
Support Vectors Md1.BinaryLearners{1}.SupportVectors model->SV
Md1.BinaryLearners{2}.SupportVectors
Md1.BinaryLearners{3}.SupportVectors
Number of Support Vectors length(SVMmodel.BinaryLearners{1}.SupportVectors) model->nSV
length(SVMmodel.BinaryLearners{2}.SupportVectors)
length(SVMmodel.BinaryLearners{3}.SupportVectors)
Alpha Md1.BinaryLearners{1}.Alpha model->sv_coef
Md1.BinaryLearners{2}.Alpha
Md1.BinaryLearners{3}.Alpha
Bias Md1.BinaryLearners{1}.Bias model->rho
Md1.BinaryLearners{2}.Bias
Md1.BinaryLearners{3}.Bias

Problem 5: (LCDK) Classification of Bird sound using SVM

Status: Complete

  • svm_write.m
  • svm_training.m
  • lab3_problem5 directory (main.c & ISRs.c)--debugging!
  • SVM to classify the features. Use MFCC features to classify Bird sounds.

About

Lab 3 CCS Project Files for EE 443 DSP Capstone at the UW (Spring 2018)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published