Skip to content

aijinrjinr/MLB-Seg

Repository files navigation

Consistency-guided Meta-Learning for Bootstrapping Semi-Supervised Medical Image Segmentation (MLB-Seg)

Pytorch implementation for MLB-Seg

Data

All data will be stored in a folder data

 MLB-Seg (our repo)
    ├── data├── LA├──train
            |     ├──meta_train
            |     ├──original_data
            |     └──split_info.mat
            |
            └── Prostate├──train
                        ├──meta_train
                        ├──original_data
                        └──split_info.mat
  • Please download the original LA/PROMISE12 dataset and put it in the corresponding original_data folder which would be used during validation.
  • Store each 2D slice from the training set in the corresponding train folder and each 2D slice from the meta set in the corresponding meta_train folder.
  • For data in train, make sure it has the format shown below
XX.npy
  ├──'img'
  ├──'label'
  └──'noisy_label'
  • 'img' represents the original slice, 'label' is the ground-truth segmentation and 'noisy_label' is the imperfect label (could be noisy annotations or generated labels for unlabelde data).
  • For data in meta_train, make sure it has the format shown below
XX.npy
  ├──'img'
  └──'label'
  • split_info.mat store the information (name) for each partient in the training/meta/validation set which has the format shown below
split_info.mat
  ├──'train'
  ├──'meta'
  └──'test'

Train

python train.py --dataset Prostate --train_root ./data/Prostate/train/  --meta_root ./data/Prostate/meta_train/ --vali_root ./data/Prostate/original_data/ --checkpoint ./checkpoint/pretrained_model.pth --datasplitpath ./data/Prostate/split_info.mat
  • Store the pretrained model (training on the meta set) in checkpoint folder.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages