Official code implementation for "Continual Semi-Supervised Learning through Contrastive Interpolation Consistency" - Accepted at Pattern Recognition Letters 2022
DOI: 10.1016/j.patrec.2022.08.006
Volume: 162
To run the experiments:
- export $PYTHONPATH=<ROOT DIR OF THIS REPO>
python utils/main.py
(+ args)- argument
lpc
(labels per class) specifies how many labels are not masked (leave it empty for full supervision)
For example:
python utils/main.py --n_epochs=50 --model=ccic --dataset=seq-cifar10 --lr=0.001 --batch_size=32 --buffer_size=500 --minibatch_size=32 --alpha=0.5 --lamda=0.5 --k=3 --memory_penalty=1 --k_aug=3 --sharp_temp=0.5 --mixup_alpha=0.75
Please use the following citation if you intend to use this work.
@article{boschini2022continual,
title = {Continual semi-supervised learning through contrastive interpolation consistency},
journal = {Pattern Recognition Letters},
volume = {162},
pages = {9-14},
year = {2022},
issn = {0167-8655},
doi = {https://doi.org/10.1016/j.patrec.2022.08.006},
url={https://arxiv.org/abs/2108.06552},
author = {Boschini, Matteo and Buzzega, Pietro and Bonicelli, Lorenzo and Porrello, Angelo and Calderara, Simone},
}