-
Notifications
You must be signed in to change notification settings - Fork 0
/
cnn_mnist.py
125 lines (100 loc) · 3.88 KB
/
cnn_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import numpy as np
import tensorflow as tf
tf.logging.set_verbosity(tf.logging.INFO)
def cnn_model_fn(features, labels, mode):
"""Model function for CNN"""
# Input Layer
with tf.name_scope("Input_Layer"):
input_layer = tf.reshape(features["x"], [-1, 28, 28, 1])
# Convolutional Layer #1
conv1 = tf.layers.conv2d(
inputs=input_layer,
filters=32,
kernel_size=[5, 5],
padding="same",
activation=tf.nn.relu
)
# Pooling Layer #1
pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2)
# Convolutional Layer # 2 and Pooling Layer #2
conv2 = tf.layers.conv2d(
inputs=pool1,
filters=64,
kernel_size=[5, 5],
padding="same",
activation=tf.nn.relu
)
pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2)
# Dense Layer
pool2_flat = tf.reshape(pool2, [-1, 7 * 7 * 64])
dense = tf.layers.dense(inputs=pool2_flat, units=1024, activation=tf.nn.relu)
dropout = tf.layers.dropout(
inputs=dense, rate=0.4, training=mode == tf.estimator.ModeKeys.TRAIN
)
# Logits Layer
logits = tf.layers.dense(inputs=dropout, units=10)
predictions = {
# Generate predictions (for PREDICT and EVAL Mode)
"classes": tf.argmax(input=logits, axis=1),
"probabilities": tf.nn.softmax(logits, name="softmax_tensor")
}
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
# Calculate Loss (for both TRAIN and EVAL modes)
onehot_labels = tf.one_hot(indices=tf.cast(labels, tf.int32), depth=10)
loss = tf.losses.softmax_cross_entropy(
onehot_labels=onehot_labels, logits=logits
)
learning_rate = tf.train.exponential_decay(0.001, tf.train.get_global_step(), 100, 0.96, staircase=True)
# Configure the Training Op (for TRAIN mode)
if mode == tf.estimator.ModeKeys.TRAIN:
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
train_op = optimizer.minimize(
loss=loss,
global_step=tf.train.get_global_step()
)
return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op)
# Add evaluation metrics (for EVAL mode)
eval_metrics_ops = {
"accuracy": tf.metrics.accuracy(
labels=labels, predictions=predictions["classes"]
)
}
return tf.estimator.EstimatorSpec(
mode=mode, loss=loss, eval_metric_ops=eval_metrics_ops
)
def main(unused_argv):
# Load training data and eval
mnist = tf.contrib.learn.datasets.load_dataset("mnist")
train_data = mnist.train.images
train_labels = np.asarray(mnist.train.labels, dtype=np.int32)
eval_data = mnist.test.images
eval_labels = np.asarray(mnist.test.labels, dtype=np.int32)
# Create the Estimator
mnist_classifier = tf.estimator.Estimator(model_fn=cnn_model_fn, model_dir="/tmp/mnist_convnet_model")
# Set up logging for predictions
tensors_to_log = {"probabilities": "softmax_tensor"}
logging_hook = tf.train.LoggingTensorHook(tensors=tensors_to_log, every_n_iter=50)
# Train the model
train_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": train_data},
y=train_labels,
batch_size=100,
num_epochs=1,
shuffle=True
)
mnist_classifier.train(
input_fn=train_input_fn,
hooks=[logging_hook]
)
# Evaluate the model and print results
eval_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": eval_data},
y=eval_labels,
num_epochs=1,
shuffle=False
)
eval_results = mnist_classifier.evaluate(input_fn=eval_input_fn)
print(eval_results)
if __name__ == "__main__":
tf.app.run()