The aim is to develop an R package, which is new.dist package, for the probability (density) function, the distribution function, the quantile function and the associated random number generation function for discrete and continuous distributions, which have recently been proposed in the literature. This package implements the following distributions: The Power Muth Distribution, A bimodal Weibull Distribution, The Discrete Lindley Distribution 1, The Discrete Lindley Distribution 2, The Gamma-Lomax Distribution, Weighted Geometric Distribution, A Power Log-Dagum Distribution, Kumaraswamy Distribution, Lindley Distribution, Ram Awadh Distribution, The Unit-Inverse Gaussian Distribution, EP Distribution, Akash Distribution, Ishita Distribution, Maxwell Distribution, The Standard Omega Distribution, Slashed Generalized Rayleigh Distribution, Two-Parameter Rayleigh Distribution, Muth Distribution, Uniform-Geometric Distribution, Discrete Weibull Distribution.
You can install the development version of new.dist from [GitHub][https://github.com/] with:
# install.packages("devtools")
devtools::install_github("akmn35/new.dist")
new.dist
Density, distribution function, quantile function and random
generation for parameter estimation of distributions.
dbwd
Density function for Bimodal Weibull distribution with shape
(alpha) and scale (beta) parameters.
library(new.dist)
dbwd(1,alpha=2,beta=3,sigma=4)
#> [1] 0.01594262
pbwd
Distribution function for Bimodal Weibull distribution with shape
(alpha) and scale (beta) parameters.
library(new.dist)
pbwd(1,alpha=2,beta=3,sigma=4)
#> [1] 0.003859685
qbwd
Quantile function for Bimodal Weibull distribution with shape
(alpha) and scale (beta) parameters.
library(new.dist)
qbwd(.7,alpha=2,beta=3,sigma=4)
#> [1] 4.759942
rbwd
Random generation for a Bimodal Weibull distribution with shape
(alpha) and scale (beta) parameters.
library(new.dist)
rbwd(5,alpha=2,beta=3,sigma=4)
#> [1] 5.787403 3.062926 2.560047 3.406179 2.344262
dsgrd
Density function for a Slashed Generalized Rayleigh distribution
with shape (alpha), scale (theta) and kurtosis(beta) parameters.
library(new.dist)
dsgrd(2,theta=3,alpha=1,beta=4)
#> [1] 0.08314235
psgrd
Distribution function for a Slashed Generalized Rayleigh
distribution with shape (alpha), scale (theta) and kurtosis (beta)
parameters.
library(new.dist)
psgrd(5,theta=3,alpha=1,beta=4)
#> [1] 0.9989333
qsgrd
Quantile function for a Slashed Generalized Rayleigh
distribution with shape (alpha), scale (theta) and kurtosis (beta)
parameters.
library(new.dist)
qsgrd(.4,theta=3,alpha=1,beta=4)
#> [1] 0.8358487
rsgrd
Random generation for a Slashed Generalized Rayleigh
distribution with shape (alpha), scale (theta) and kurtosis (beta)
parameters.
library(new.dist)
rsgrd(5,theta=3,alpha=1,beta=4)
#> [1] 0.9162424 2.2939520 0.9160551 0.7168782 1.2676308
dsod
Density function for a the Standard Omega distribution with alpha
and beta parameters.
library(new.dist)
dsod(0.4, alpha=1, beta=2)
#> [1] 0.6986559
psod
Distribution function for a the Standard Omega distribution with
alpha and beta parameters.
library(new.dist)
psod(0.4, alpha=1, beta=2)
#> [1] 0.1490371
qsod
Quantile function for a the Standard Omega distribution with
alpha and beta parameters.
library(new.dist)
qsod(.8, alpha=1, beta=2)
#> [1] 0.9607689
rsod
Random generation for a the Standard Omega distribution with
alpha and beta parameters.
library(new.dist)
rsod(5, alpha=1, beta=2)
#> [1] 0.9626043 0.6029560 0.8908171 0.9719128 0.6324489
dugd
Density function for the Uniform-Geometric distribution with
theta parameter.
library(new.dist)
dugd(1, theta=0.5)
#> [1] 0.6931472
pugd
Distribution function for the Uniform-Geometric distribution with
theta parameter.
library(new.dist)
pugd(1,theta=.5)
#> [1] 0.6931472
qugd
Quantile function for the Uniform-Geometric distribution with
theta parameter.
library(new.dist)
qugd(0.6,theta=.1)
#> [1] 4
rugd
Random generation for the Uniform-Geometric distribution with
theta parameter.
library(new.dist)
rugd(5,theta=.1)
#> [1] 1 13 13 5 9
dtpmd
Density function for the Power Muth distribution with shape
(beta) and scale (alpha) parameters.
library(new.dist)
dtpmd(1, beta=2, alpha=3)
#> [1] 0.04952547
ptpmd
Distribution function for the Power Muth distribution shape
(beta) and scale (alpha) parameters.
library(new.dist)
ptpmd(1,beta=2,alpha=3)
#> [1] 0.008115344
qtpmd
Quantile function for the Power Muth distribution with shape
(beta) and scale (alpha) parameters.
library(new.dist)
qtpmd(.5,beta=2,alpha=3)
#> [1] 1.990084
rtpmd
Random generation for the Power Muth distribution with shape
(beta) and scale (alpha) parameters.
library(new.dist)
rtpmd(5,beta=2,alpha=3)
#> [1] 1.806067 1.668991 1.865928 1.775550 1.721437
dtprd
Density function for the Two-Parameter Rayleigh distribution
with location (mu) and scale (lambda) parameters.
library(new.dist)
dtprd(5, lambda=4, mu=4)
#> [1] 0.1465251
ptprd
Distribution function for Two-Parameter Rayleigh distribution
with location (mu) and scale (lambda) parameters.
library(new.dist)
ptprd(2,lambda=2,mu=1)
#> [1] 0.8646647
qtprd
Quantile function for Two-Parameter Rayleigh distribution with
location (mu) and scale (lambda) parameters.
library(new.dist)
qtprd(.5,lambda=2,mu=1)
#> [1] 1.588705
rtprd
Random generation for Two-Parameter Rayleigh distribution with
location (mu) and scale (lambda) parameters.
library(new.dist)
rtprd(5,lambda=2,mu=1)
#> [1] 2.137743 1.385888 1.788912 1.696368 1.783938
duigd
Density function for the Unit Inverse Gaussian distribution with
mean (mu) and scale (lambda) parameters.
library(new.dist)
duigd(1, mu=2, lambda=3)
#> [1] 0.4749088
puigd
Distribution function for the Unit Inverse Gaussian distribution
with mean (mu) and scale (lambda) parameters.
library(new.dist)
puigd(1,mu=2,lambda=3)
#> [1] 0.2873867
quigd
Quantile function for the Unit Inverse Gaussian distribution
with mean (mu) and scale (lambda) parameters.
library(new.dist)
quigd(.1,mu=2,lambda=3)
#> [1] 0.6104128
ruigd
Random generation for the Unit Inverse Gaussian distribution
with mean (mu) and scale (lambda) parameters.
library(new.dist)
ruigd(5,mu=2,lambda=3)
#> [1] 1.7037855 2.8067345 0.8597714 0.7931621 1.0315418
dwgd
Density function for the Weighted Geometric distribution with
alpha and lambda parameters.
library(new.dist)
dwgd(1,alpha=.2,lambda=3)
#> [1] 0.79872
pwgd
Distribution function for the Weighted Geometric distribution
with alpha and lambda parameters.
library(new.dist)
dwgd(1,alpha=.2,lambda=3)
#> [1] 0.79872
qwgd
Quantile function for the Weighted Geometric distribution with
alpha and lambda parameters.
library(new.dist)
qwgd(.98,alpha=.2,lambda=3)
#> [1] 3
rwgd
Random generation for the Weighted Geometric distribution with
alpha and lambda parameters.
library(new.dist)
rwgd(5,alpha=.2,lambda=3)
#> [1] 1 1 3 1 2
ddLd1
Density function for the Discrete Lindley distribution 1 with
theta parameter.
library(new.dist)
ddLd1(1,theta=2)
#> [1] 0.1828223
pdLd1
Distribution function for the Discrete Lindley distribution 1
with theta parameter.
library(new.dist)
ddLd1(1,theta=2)
#> [1] 0.1828223
qdLd1
Quantile function for the Discrete Lindley distribution 1 with
theta parameter.
library(new.dist)
qdLd1(.993,theta=2)
#> [1] 3
rdLd1
Random generation for the Discrete Lindley distribution 1 with
theta parameter.
library(new.dist)
rdLd1(5,theta=1)
#> [1] 0 2 0 2 0
dmd
Density function for Maxwell distribution with scale (theta)
parameter.
library(new.dist)
dmd(1,theta=2)
#> [1] 0.4839414
pmd
Distribution function for a Maxwell distribution with scale
(theta) parameter.
library(new.dist)
pmd(1,theta=2)
#> [1] 0.198748
qmd
Quantile function for a Maxwell distribution with scale (theta)
parameter.
library(new.dist)
qmd(.4,theta=5)
#> [1] 2.161694
rmd
Random generation for a Maxwell distribution with scale (theta)
parameter.
library(new.dist)
rmd(5,theta=1)
#> [1] 0.9270855 2.2550202 1.2018527 0.9012689 1.6375431
dkd
Density function for Kumaraswamy distribution with shape (alpha,
lambda) parameters.
library(new.dist)
dkd(0.1,lambda=2,alpha=3)
#> [1] 0.58806
pkd
Distribution function for Kumaraswamy distribution with shape
(alpha, lambda) parameters.
library(new.dist)
dkd(0.1,lambda=2,alpha=3)
#> [1] 0.58806
qkd
Quantile function for Kumaraswamy distribution with shape (alpha,
lambda) parameters.
library(new.dist)
pkd(0.5,lambda=2,alpha=3)
#> [1] 0.578125
rkd
Random generation for Kumaraswamy distribution with shape (alpha,
lambda) parameters.
library(new.dist)
rkd(5,lambda=2,alpha=3)
#> [1] 0.6415521 0.5272059 0.2329670 0.4351743 0.5657495
dgld
Density function for the Gamma-Lomax distribution with shape (a,
alpha) and scale (beta) parameters.
library(new.dist)
dgld(1,a=2,alpha=3,beta=4)
#> [1] 0.2056491
pgld
Distribution function for the Gamma-Lomax distribution with shape
(a, alpha) and scale (beta) parameters.
library(new.dist)
dgld(1,a=2,alpha=3,beta=4)
#> [1] 0.2056491
qgld
Quantile function for the Gamma-Lomax distribution with shape (a,
alpha) and scale (beta) parameters.
library(new.dist)
qgld(.8,a=2,alpha=3,beta=4)
#> [1] 6.852518
rgld
Random generation for the Gamma-Lomax distribution with shape (a,
alpha) and scale (beta) parameters.
library(new.dist)
rgld(5,a=2,alpha=3,beta=4)
#> [1] 2.8217781 5.5886484 8.4958716 0.9864014 2.1699043
ddLd2
Density function for a Discrete Lindley distribution 2 with
theta parameter.
library(new.dist)
ddLd2(2,theta=2)
#> [1] 0.03530023
pdLd2
Distribution function for a Discrete Lindley distribution 2 with
theta parameter.
library(new.dist)
pdLd2(1,theta=2)
#> [1] 0.9572635
qdLd2
Quantile function for a Discrete Lindley distribution 2 with
theta parameter.
library(new.dist)
qdLd2(.5,theta=2)
#> [1] 0
rdLd2
Random generation for a Discrete Lindley distribution 2 with
theta parameter.
library(new.dist)
rdLd2(5,theta=1)
#> [1] 3 0 1 0 0
dEPd
Density function for the EP distribution with lambda and beta
parameters.
library(new.dist)
dEPd(1, lambda=2, beta=3)
#> [1] 0.05165063
pEPd
Distribution function for the EP distribution with lambda and
beta parameters.
library(new.dist)
pEPd(1, lambda=2, beta=3)
#> [1] 0.9836125
qEPd
Quantile function for the EP distribution with lambda and beta
parameters.
library(new.dist)
qEPd(.8,lambda=2,beta=3)
#> [1] 0.295895
rEPd
Random generation for the EP distribution with lambda and beta
parameters.
library(new.dist)
rEPd(5,lambda=2,beta=3)
#> [1] 0.08754699 0.01152708 0.27621565 0.12618652 0.18547342
dRA
Density function for a Ram Awadh distribution with scale (theta)
parameter.
library(new.dist)
dRA(1,theta=2)
#> [1] 0.1412194
pRA
Distribution function for a Ram Awadh distribution with scale
(theta) parameter.
library(new.dist)
pRA(1,theta=2)
#> [1] 0.3115553
qRA
Quantile function for a Ram Awadh distribution with scale (theta)
parameter.
library(new.dist)
dRA(.8,theta=2)
#> [1] 0.163461
rRA
Random generation for a Ram Awadh distribution with scale (theta)
parameter.
library(new.dist)
rRA(5,theta=2)
#> [1] 0.9774141 2.8355960 1.9192415 4.0137512 2.5296763
domd
Density function for the Muth distribution with alpha parameter.
library(new.dist)
domd(1,alpha=.2)
#> [1] 0.4123689
pomd
Distribution function for the Muth distribution with alpha
parameter.
library(new.dist)
pomd(1,alpha=.2)
#> [1] 0.596272
qomd
Quantile function for the Muth distribution with alpha parameter.
library(new.dist)
qomd(.8,alpha=.2)
#> [1] 1.637047
romd
Random generation for the Muth distribution with alpha parameter.
library(new.dist)
romd(5,alpha=.2)
#> [1] 2.291542 1.144422 1.345481 2.172140 1.377844
dpldd
Density function for a Power Log Dagum distribution with alpha,
beta and theta parameters.
library(new.dist)
dpldd(1, alpha=2, beta=3, theta=4)
#> [1] 0.1766842
ppldd
Distribution function for a Power Log Dagum distribution with
alpha, beta and theta parameters.
library(new.dist)
ppldd(1, alpha=2, beta=3, theta=4)
#> [1] 0.9742603
qpldd
Quantile function for a Power Log Dagum distribution with alpha,
beta and theta parameters.
library(new.dist)
qpldd(.8, alpha=2, beta=3, theta=4)
#> [1] 0.6109249
rpldd
Random generation for a Power Log Dagum distribution with alpha,
beta and theta parameters.
library(new.dist)
rpldd(5, alpha=2, beta=3, theta=4)
#> [1] 0.05775973 -0.28725832 0.53623427 0.64797737 0.01620600
dLd
Density function for Lindley distribution with theta parameter.
library(new.dist)
dLd(1,theta=2)
#> [1] 0.3608941
pLd
Distribution function for Lindley distribution with theta
parameter.
library(new.dist)
pLd(1,theta=2)
#> [1] 0.7744412
qLd
Quantile function for Lindley distribution with theta parameter.
library(new.dist)
qLd(.5,theta=2)
#> [1] 0.4872058
rLd
Random generation for Lindley distribution with theta parameter.
library(new.dist)
rLd(5,theta=1)
#> [1] 0.3935864 1.7494001 0.2860219 1.1050805 1.8812775
Department of Statistics, Faculty of Science, Selcuk University, 42250,
Konya, Turkey
Email:coskun@selcuk.edu.tr
Akdoğan, Y., Kuş, C., Asgharzadeh, A., Kınacı, İ., & Sharafi, F. (2016). Uniform-geometric distribution. Journal of Statistical Computation and Simulation, 86(9), 1754-1770.
Akgül, F. G., Acıtaş, Ş. ve Şenoğlu, B., 2018, Inferences on stress–strength reliability based on ranked set sampling data in case of Lindley distribution, Journal of statistical computation and simulation, 88 (15), 3018-3032.
Bakouch, H. S., Khan, M. N., Hussain, T. ve Chesneau, C., 2019, A power log-Dagum distribution: estimation and applications, Journal of Applied Statistics, 46 (5), 874-892.
Bakouch, H. S., Jazi, M. A. ve Nadarajah, S., 2014, A new discrete distribution, Statistics, 48 (1), 200-240.
Birbiçer, İ. ve Genç, A. İ., 2022, On parameter estimation of the standard omega distribution. Journal of Applied Statistics, 1-17.
Cordeiro, G. M., Ortega, E. M. ve Popović, B. V., 2015, The gamma-Lomax distribution, Journal of statistical computation and simulation, 85 (2), 305-319.
Dey, S., Dey, T. ve Kundu, D., 2014, Two-parameter Rayleigh distribution: different methods of estimation, American Journal of Mathematical and Management Sciences, 33 (1), 55-74.
Ghitany, M., Mazucheli, J., Menezes, A. ve Alqallaf, F., 2019, The unit-inverse Gaussian distribution: A new alternative to two-parameter distributions on the unit interval, Communications in Statistics-Theory and Methods, 48 (14), 3423-3438.
Gómez-Déniz, E. ve Calderín-Ojeda, E., 2011, The discrete Lindley distribution: properties and applications.Journal of statistical computation and simulation, 81 (11), 1405-1416.
Iriarte, Y. A., Vilca, F., Varela, H. ve Gómez, H. W., 2017, Slashed generalized Rayleigh distribution, Communications in Statistics-Theory and Methods, 46 (10), 4686-4699.
Jodra, P., Gomez, H. W., Jimenez-Gamero, M. D., & Alba-Fernandez, M. V. (2017). The power Muth distribution . Mathematical Modelling and Analysis, 22(2), 186-201.
Jodrá, P., Jiménez-Gamero, M. D. ve Alba-Fernández, M. V., 2015, On the Muth distribution, Mathematical Modelling and Analysis, 20 (3), 291-310.
Kohansal, A. ve Bakouch, H. S., 2021, Estimation procedures for Kumaraswamy distribution parameters under adaptive type-II hybrid progressive censoring, Communications in Statistics-Simulation and Computation, 50 (12), 4059-4078.
Krishna, H., Vivekanand ve Kumar, K., 2015, Estimation in Maxwell distribution with randomly censored data, Journal of statistical computation and simulation, 85 (17), 3560-3578.
Kuş, C., 2007, A new lifetime distribution, Computational Statistics & Data Analysis, 51 (9), 4497-4509.
Najarzadegan, H., Alamatsaz, M. H., Kazemi, I. ve Kundu, D., 2020, Weighted bivariate geometric distribution: Simulation and estimation, Communications in Statistics-Simulation and Computation, 49 (9), 2419-2443.
Ristić, M. M., & Balakrishnan, N. (2012), The gamma-exponentiated exponential distribution. Journal of statistical computation and simulation, 82(8), 1191-1206.
Shukla, K. K., Shanker, R. ve Tiwari, M. K., 2022, A new one parameter discrete distribution and its applications, Journal of Statistics and Management Systems, 25 (1), 269-283.
Vila, R. ve Niyazi Çankaya, M., 2022, A bimodal Weibull distribution: properties and inference,Journal of Applied Statistics, 49 (12), 3044-3062.