gim是一个即时通讯服务器,代码全部使用golang完成。主要功能
1.支持tcp,websocket接入
2.离线消息同步
3.多业务接入
4.单用户多设备同时在线
5.单聊,群聊,以及超大群聊天场景
6.支持服务水平扩展
数据库:Mysql+Redis
通讯框架:GRPC
长连接通讯协议:Protocol Buffers
日志框架:Zap
1.首先安装MySQL,Redis
2.创建数据库gim,执行sql/create_table.sql,完成初始化表的创建(数据库包含提供测试的一些初始数据)
3.修改config下配置文件,使之和你本地配置一致
4.分别切换到cmd的tcp_conn,ws_conn,logic目录下,执行go run main.go,启动TCP连接层服务器,WebSocket连接层服务器,逻辑层服务器
注意:tcp_conn使用了linux的系统调用,所以只能在linux环境下启动,如果是其他环境,可以在安装docker的前提下,
执行run.sh启动
1.在test目录下,tcp_conn或者ws_conn目录下,执行go run main,启动测试脚本
2.根据提示,依次填入app_id,user_id,device_id,sync_sequence(中间空格空开),进行长连接登录;数据库device表中已经初始化了一些设备信息,用作测试
3.执行api/logic/logic_client_ext_test.go下的TestLogicExtServer_SendMessage函数,发送消息
1.首先生成私钥和公钥
2.在app表里根据你的私钥添加一条app记录
3.将app_id和公钥保存到业务服务器
4.将用户通过LogicClientExtServer.AddUser接口添加到IM服务器
5.通过LogicClientExtServer.RegisterDevice接口注册设备,获取设备id(device_id)
6.将app_id,user_id,device_id用公钥通过公钥加密,生成token,相应库的代码在pkg/util/aes.go
7.接下来使用这个token,app就可以和IM服务器交互
项目所有的proto协议在gim/public/proto/目录下
1.tcp.proto
长连接通讯协议
2.logic_client.ext.proto
对客户端(Android设备,IOS设备)提供的rpc协议
3.logic_server.ext.proto
对业务服务器提供的rpc协议
4.logic.int.proto
对conn服务层提供的rpc协议
5.conn.int.proto
对logic服务层提供的rpc协议
项目结构遵循 https://github.com/golang-standards/project-layout
api: 服务对外提供的grpc接口
cmd: 服务启动入口
config: 服务配置
internal: 每个服务私有代码
pkg: 服务共有代码
sql: 项目sql文件
test: 长连接测试脚本
1.tcp_conn
维持与客户端的TCP长连接,心跳,以及TCP拆包粘包,消息编解码
2.ws_conn
维持与客户端的WebSocket长连接,心跳,消息编解码
3.logic
设备信息,用户信息,群组信息管理,消息转发逻辑
遵循LV的协议格式,一个消息包分为两部分,消息字节长度以及消息内容。
这里为了减少内存分配,拆出来的包的内存复用读缓存区内存。
拆包流程:
1.首先从系统缓存区读取字节流到buffer
2.根据包头的length字段,检查报的value字段的长度是否大于等于length
3.如果大于,返回一个完整包(此包内存复用),重复步骤2
4.如果小于,将buffer的有效字节前移,重复步骤1
每个用户都会维护一个自增的序列号,当用户A给用户B发送消息是,首先会获取A的最大序列号,设置为这条消息的seq,持久化到用户A的消息列表,
再通过长连接下发到用户A账号登录的所有设备,再获取用户B的最大序列号,设置为这条消息的seq,持久化到用户B的消息列表,再通过长连接下发
到用户B账号登录的所有设备。
假如用户的某个设备不在线,在设备长连接登录时,用本地收到消息的最大序列号,到服务器做消息同步,这样就可以保证离线消息不丢失。
首先解释一下,什么是读扩散,什么是写扩散
简介:群组成员发送消息时,先建立一个会话,都将这个消息写入这个会话中,同步离线消息时,需要同步这个会话的未同步消息
优点:每个消息只需要写入数据库一次就行,减少数据库访问次数,节省数据库空间
缺点:一个用户有n个群组,客户端每次同步消息时,要上传n个序列号,服务器要对这n个群组分别做消息同步
简介:在群组中,每个用户维持一个自己的消息列表,当群组中有人发送消息时,给群组的每个用户的消息列表插入一条消息即可
优点:每个用户只需要维护一个序列号和消息列表
缺点:一个群组有多少人,就要插入多少条消息,当群组成员很多时,DB的压力会增大
采用写扩散,群组成员信息持久化到数据库保存。支持消息离线同步。
采用读扩散,群组成员信息保存到redis,不支持离线消息同步。
c1.d1和c1.d2分别表示c1用户的两个设备d1和d2,c2.d3和c2.d4同理
系统中的错误一般可以归类为两种,一种是业务定义的错误,一种就是未知的错误,在业务正式上线的时候,业务定义的错误的属于正常业务逻辑,不需要打印出来, 但是未知的错误,我们就需要打印出来,我们不仅要知道是什么错误,还要知道错误的调用堆栈,所以这里我对GRPC的错误进行了一些封装,使之包含调用堆栈。
func WrapError(err error) error {
if err == nil {
return nil
}
s := &spb.Status{
Code: int32(codes.Unknown),
Message: err.Error(),
Details: []*any.Any{
{
TypeUrl: TypeUrlStack,
Value: util.Str2bytes(stack()),
},
},
}
return status.FromProto(s).Err()
}
// Stack 获取堆栈信息
func stack() string {
var pc = make([]uintptr, 20)
n := runtime.Callers(3, pc)
var build strings.Builder
for i := 0; i < n; i++ {
f := runtime.FuncForPC(pc[i] - 1)
file, line := f.FileLine(pc[i] - 1)
n := strings.Index(file, name)
if n != -1 {
s := fmt.Sprintf(" %s:%d \n", file[n:], line)
build.WriteString(s)
}
}
return build.String()
}
这样,不仅可以拿到错误的堆栈,错误的堆栈也可以跨RPC传输,但是,这样你只能拿到当前服务的堆栈,却不能拿到调用方的堆栈,就比如说,A服务调用 B服务,当B服务发生错误时,在A服务通过日志打印错误的时候,我们只打印了B服务的调用堆栈,怎样可以把A服务的堆栈打印出来。我们在A服务调用的地方也获取 一次堆栈。
func WrapRPCError(err error) error {
if err == nil {
return nil
}
e, _ := status.FromError(err)
s := &spb.Status{
Code: int32(e.Code()),
Message: e.Message(),
Details: []*any.Any{
{
TypeUrl: TypeUrlStack,
Value: util.Str2bytes(GetErrorStack(e) + " --grpc-- \n" + stack()),
},
},
}
return status.FromProto(s).Err()
}
func interceptor(ctx context.Context, method string, req, reply interface{}, cc *grpc.ClientConn, invoker grpc.UnaryInvoker, opts ...grpc.CallOption) error {
err := invoker(ctx, method, req, reply, cc, opts...)
return gerrors.WrapRPCError(err)
}
var LogicIntClient pb.LogicIntClient
func InitLogicIntClient(addr string) {
conn, err := grpc.DialContext(context.TODO(), addr, grpc.WithInsecure(), grpc.WithUnaryInterceptor(interceptor))
if err != nil {
logger.Sugar.Error(err)
panic(err)
}
LogicIntClient = pb.NewLogicIntClient(conn)
}
像这样,就可以获取完整一次调用堆栈。 错误打印也没有必要在函数返回错误的时候,每次都去打印。因为错误已经包含了堆栈信息
// 错误的方式
if err != nil {
logger.Sugar.Error(err)
return err
}
// 正确的方式
if err != nil {
return err
}
然后,我们在上层统一打印就可以
func startServer {
extListen, err := net.Listen("tcp", conf.LogicConf.ClientRPCExtListenAddr)
if err != nil {
panic(err)
}
extServer := grpc.NewServer(grpc.UnaryInterceptor(LogicClientExtInterceptor))
pb.RegisterLogicClientExtServer(extServer, &LogicClientExtServer{})
err = extServer.Serve(extListen)
if err != nil {
panic(err)
}
}
func LogicClientExtInterceptor(ctx context.Context, req interface{}, info *grpc.UnaryServerInfo, handler grpc.UnaryHandler) (resp interface{}, err error) {
defer func() {
logPanic("logic_client_ext_interceptor", ctx, req, info, &err)
}()
resp, err = handler(ctx, req)
logger.Logger.Debug("logic_client_ext_interceptor", zap.Any("info", info), zap.Any("ctx", ctx), zap.Any("req", req),
zap.Any("resp", resp), zap.Error(err))
s, _ := status.FromError(err)
if s.Code() != 0 && s.Code() < 1000 {
md, _ := metadata.FromIncomingContext(ctx)
logger.Logger.Error("logic_client_ext_interceptor", zap.String("method", info.FullMethod), zap.Any("md", md), zap.Any("req", req),
zap.Any("resp", resp), zap.Error(err), zap.String("stack", gerrors.GetErrorStack(s)))
}
return
}
这样做的前提就是,在业务代码中透传context,golang不像其他语言,可以在线程本地保存变量,像Java的ThreadLocal,所以只能通过函数参数的形式进行传递,gim中,service层函数的第一个参数
都是context,但是dao层和cache层就不需要了,不然,显得代码臃肿。
最后可以在客户端的每次请求添加一个随机的request_id,这样客户端到服务的每次请求都可以串起来了。
func getCtx() context.Context {
token, _ := util.GetToken(1, 2, 3, time.Now().Add(1*time.Hour).Unix(), util.PublicKey)
return metadata.NewOutgoingContext(context.TODO(), metadata.Pairs(
"app_id", "1",
"user_id", "2",
"device_id", "3",
"token", token,
"request_id", strconv.FormatInt(time.Now().UnixNano(), 10)))
}