Skip to content

Compute homographies with deep networks instead of feature matching and RANSAC.

Notifications You must be signed in to change notification settings

alexhagiopol/deep_homography_estimation

Repository files navigation

Deep Image Homography Estimation

Abstract

This project implements the 2016 paper Deep Image Homography Estimation by DeTone, Malisiewicz, and Rabinovich. We create an image homography training set by randomly warping the dataset presented in the 2015 paper Microsoft COCO: Common Objects in Context by Lin et al. We then architect and train a deep convolutional neural network to learn how to compute a 3x3 homography matrix given an image pair.

Installation

This procedure was tested on Ubuntu 16.04 and Mac OS X 10.11.6 (El Capitan). GPU-accelerated training is supported on Ubuntu only.

Prerequisites: Install Python package dependencies using my instructions. Then, activate the environment:

source activate deep-learning

Optional, but recommended on Ubuntu: Install support for NVIDIA GPU acceleration with CUDA v8.0 and cuDNN v5.1:

wget https://www.dropbox.com/s/08ufs95pw94gu37/cuda-repo-ubuntu1604-8-0-local-ga2_8.0.61-1_amd64.deb
sudo dpkg -i cuda-repo-ubuntu1604-8-0-local-ga2_8.0.61-1_amd64.deb
sudo apt-get update
sudo apt-get install cuda
wget https://www.dropbox.com/s/9uah11bwtsx5fwl/cudnn-8.0-linux-x64-v5.1.tgz
tar -xvzf cudnn-8.0-linux-x64-v5.1.tgz
cd cuda/lib64
export LD_LIBRARY_PATH=`pwd`:$LD_LIBRARY_PATH
cd ..
export CUDA_HOME=`pwd`
sudo apt-get install libcupti-dev
pip install --ignore-installed --upgrade https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.1.0-cp35-cp35m-linux_x86_64.whl

Clone the deep_homography_estimation repo:

git clone https://github.com/alexhagiopol/deep_homography_estimation
cd deep_homography_estimation

Download the MSCOCO Dataset:

mkdir MSCOCO
cd MSCOCO    
wget http://msvocds.blob.core.windows.net/coco2014/train2014.zip
wget http://msvocds.blob.core.windows.net/coco2014/val2014.zip
wget http://msvocds.blob.core.windows.net/coco2014/test2014.zip
wget http://msvocds.blob.core.windows.net/coco2015/test2015.zip
unzip *.zip
tar -xvzf traffic-signs-data.tar.gz
rm -rf traffic-signs-data.tar.gz

About

Compute homographies with deep networks instead of feature matching and RANSAC.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published