forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcollate.py
85 lines (73 loc) · 3.58 KB
/
collate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
r""""Contains definitions of the methods used by the _BaseDataLoaderIter workers to
collate samples fetched from dataset into Tensor(s).
These **needs** to be in global scope since Py2 doesn't support serializing
static methods.
"""
import torch
import re
from torch._six import container_abcs, string_classes, int_classes
np_str_obj_array_pattern = re.compile(r'[SaUO]')
def default_convert(data):
r"""Converts each NumPy array data field into a tensor"""
elem_type = type(data)
if isinstance(data, torch.Tensor):
return data
elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \
and elem_type.__name__ != 'string_':
# array of string classes and object
if elem_type.__name__ == 'ndarray' \
and np_str_obj_array_pattern.search(data.dtype.str) is not None:
return data
return torch.as_tensor(data)
elif isinstance(data, container_abcs.Mapping):
return {key: default_convert(data[key]) for key in data}
elif isinstance(data, tuple) and hasattr(data, '_fields'): # namedtuple
return elem_type(*(default_convert(d) for d in data))
elif isinstance(data, container_abcs.Sequence) and not isinstance(data, string_classes):
return [default_convert(d) for d in data]
else:
return data
default_collate_err_msg_format = (
"default_collate: batch must contain tensors, numpy arrays, numbers, "
"dicts or lists; found {}")
def default_collate(batch):
r"""Puts each data field into a tensor with outer dimension batch size"""
elem = batch[0]
elem_type = type(elem)
if isinstance(elem, torch.Tensor):
out = None
if torch.utils.data.get_worker_info() is not None:
# If we're in a background process, concatenate directly into a
# shared memory tensor to avoid an extra copy
numel = sum([x.numel() for x in batch])
storage = elem.storage()._new_shared(numel)
out = elem.new(storage)
return torch.stack(batch, 0, out=out)
elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \
and elem_type.__name__ != 'string_':
if elem_type.__name__ == 'ndarray' or elem_type.__name__ == 'memmap':
# array of string classes and object
if np_str_obj_array_pattern.search(elem.dtype.str) is not None:
raise TypeError(default_collate_err_msg_format.format(elem.dtype))
return default_collate([torch.as_tensor(b) for b in batch])
elif elem.shape == (): # scalars
return torch.as_tensor(batch)
elif isinstance(elem, float):
return torch.tensor(batch, dtype=torch.float64)
elif isinstance(elem, int_classes):
return torch.tensor(batch)
elif isinstance(elem, string_classes):
return batch
elif isinstance(elem, container_abcs.Mapping):
return {key: default_collate([d[key] for d in batch]) for key in elem}
elif isinstance(elem, tuple) and hasattr(elem, '_fields'): # namedtuple
return elem_type(*(default_collate(samples) for samples in zip(*batch)))
elif isinstance(elem, container_abcs.Sequence):
# check to make sure that the elements in batch have consistent size
it = iter(batch)
elem_size = len(next(it))
if not all(len(elem) == elem_size for elem in it):
raise RuntimeError('each element in list of batch should be of equal size')
transposed = zip(*batch)
return [default_collate(samples) for samples in transposed]
raise TypeError(default_collate_err_msg_format.format(elem_type))