-
Notifications
You must be signed in to change notification settings - Fork 7
/
cukmeans.cu
169 lines (128 loc) · 4.18 KB
/
cukmeans.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
#include <stdio.h>
#include <time.h>
#define N 64
#define TPB 32
#define K 3
#define MAX_ITER 10
__device__ float distance(float x1, float x2)
{
return sqrt((x2-x1)*(x2-x1));
}
__global__ void kMeansClusterAssignment(float *d_datapoints, int *d_clust_assn, float *d_centroids)
{
//get idx for this datapoint
const int idx = blockIdx.x*blockDim.x + threadIdx.x;
//bounds check
if (idx >= N) return;
//find the closest centroid to this datapoint
float min_dist = INFINITY;
int closest_centroid = 0;
for(int c = 0; c<K;++c)
{
float dist = distance(d_datapoints[idx],d_centroids[c]);
if(dist < min_dist)
{
min_dist = dist;
closest_centroid=c;
}
}
//assign closest cluster id for this datapoint/thread
d_clust_assn[idx]=closest_centroid;
}
__global__ void kMeansCentroidUpdate(float *d_datapoints, int *d_clust_assn, float *d_centroids, int *d_clust_sizes)
{
//get idx of thread at grid level
const int idx = blockIdx.x*blockDim.x + threadIdx.x;
//bounds check
if (idx >= N) return;
//get idx of thread at the block level
const int s_idx = threadIdx.x;
//put the datapoints and corresponding cluster assignments in shared memory so that they can be summed by thread 0 later
__shared__ float s_datapoints[TPB];
s_datapoints[s_idx]= d_datapoints[idx];
__shared__ int s_clust_assn[TPB];
s_clust_assn[s_idx] = d_clust_assn[idx];
__syncthreads();
//it is the thread with idx 0 (in each block) that sums up all the values within the shared array for the block it is in
if(s_idx==0)
{
float b_clust_datapoint_sums[K]={0};
int b_clust_sizes[K]={0};
for(int j=0; j< blockDim.x; ++j)
{
int clust_id = s_clust_assn[j];
b_clust_datapoint_sums[clust_id]+=s_datapoints[j];
b_clust_sizes[clust_id]+=1;
}
//Now we add the sums to the global centroids and add the counts to the global counts.
for(int z=0; z < K; ++z)
{
atomicAdd(&d_centroids[z],b_clust_datapoint_sums[z]);
atomicAdd(&d_clust_sizes[z],b_clust_sizes[z]);
}
}
__syncthreads();
//currently centroids are just sums, so divide by size to get actual centroids
if(idx < K){
d_centroids[idx] = d_centroids[idx]/d_clust_sizes[idx];
}
}
int main()
{
//allocate memory on the device for the data points
float *d_datapoints=0;
//allocate memory on the device for the cluster assignments
int *d_clust_assn = 0;
//allocate memory on the device for the cluster centroids
float *d_centroids = 0;
//allocate memory on the device for the cluster sizes
int *d_clust_sizes=0;
cudaMalloc(&d_datapoints, N*sizeof(float));
cudaMalloc(&d_clust_assn,N*sizeof(int));
cudaMalloc(&d_centroids,K*sizeof(float));
cudaMalloc(&d_clust_sizes,K*sizeof(float));
float *h_centroids = (float*)malloc(K*sizeof(float));
float *h_datapoints = (float*)malloc(N*sizeof(float));
int *h_clust_sizes = (int*)malloc(K*sizeof(int));
srand(time(0));
//initialize centroids
for(int c=0;c<K;++c)
{
h_centroids[c]=(float) rand() / (double)RAND_MAX;
printf("%f\n", h_centroids[c]);
h_clust_sizes[c]=0;
}
//initalize datapoints
for(int d = 0; d < N; ++d)
{
h_datapoints[d] = (float) rand() / (double)RAND_MAX;
}
cudaMemcpy(d_centroids,h_centroids,K*sizeof(float),cudaMemcpyHostToDevice);
cudaMemcpy(d_datapoints,h_datapoints,N*sizeof(float),cudaMemcpyHostToDevice);
cudaMemcpy(d_clust_sizes,h_clust_sizes,K*sizeof(int),cudaMemcpyHostToDevice);
int cur_iter = 1;
while(cur_iter < MAX_ITER)
{
//call cluster assignment kernel
kMeansClusterAssignment<<<(N+TPB-1)/TPB,TPB>>>(d_datapoints,d_clust_assn,d_centroids);
//copy new centroids back to host
cudaMemcpy(h_centroids,d_centroids,K*sizeof(float),cudaMemcpyDeviceToHost);
for(int i =0; i < K; ++i){
printf("Iteration %d: centroid %d: %f\n",cur_iter,i,h_centroids[i]);
}
//reset centroids and cluster sizes (will be updated in the next kernel)
cudaMemset(d_centroids,0.0,K*sizeof(float));
cudaMemset(d_clust_sizes,0,K*sizeof(int));
//call centroid update kernel
kMeansCentroidUpdate<<<(N+TPB-1)/TPB,TPB>>>(d_datapoints,d_clust_assn,d_centroids,d_clust_sizes);
cur_iter+=1;
}
cudaFree(d_datapoints);
cudaFree(d_clust_assn);
cudaFree(d_centroids);
cudaFree(d_clust_sizes);
free(h_centroids);
free(h_datapoints);
free(h_clust_sizes);
return 0;
}