Skip to content

Commit 097bb41

Browse files
author
Algorithmica
authored
Add files via upload
1 parent 8a22478 commit 097bb41

File tree

1 file changed

+41
-0
lines changed

1 file changed

+41
-0
lines changed
Lines changed: 41 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,41 @@
1+
import sys
2+
sys.path.append("E:/New Folder/utils")
3+
4+
import classification_utils as cutils
5+
from sklearn import model_selection, linear_model, datasets
6+
import numpy as np
7+
8+
#generate data with noise(irrelevant) features
9+
X, y = datasets.make_classification(n_samples=100, n_features=20, n_informative=2, n_redundant=4, n_repeated=0, n_classes=2)
10+
X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.2, random_state=1)
11+
12+
np.corrcoef(X_train, rowvar=False)
13+
14+
#overfit
15+
perceptron_estimator = linear_model.Perceptron(max_iter=1000)
16+
perceptron_grid = {'alpha':[0] }
17+
final_estimator = cutils.grid_search_best_model(perceptron_estimator, perceptron_grid, X_train, y_train)
18+
print(final_estimator.intercept_)
19+
print(final_estimator.coef_)
20+
21+
#overfit control
22+
perceptron_estimator = linear_model.Perceptron(max_iter=1000)
23+
perceptron_grid = {
24+
'penalty':['l1', 'l2'], 'alpha':[0, 0.00001, 0.0001, 0.0005, 0.001, 0.01, 0.1, 0.2, 0.5, 1, 3] }
25+
final_estimator = cutils.grid_search_best_model(perceptron_estimator, perceptron_grid, X_train, y_train)
26+
print(final_estimator.intercept_)
27+
print(final_estimator.coef_)
28+
29+
#overfitting
30+
lr_estimator = linear_model.LogisticRegression()
31+
lr_grid = {'C':[1e20] }
32+
final_estimator = cutils.grid_search_best_model(lr_estimator, lr_grid, X_train, y_train)
33+
print(final_estimator.intercept_)
34+
print(final_estimator.coef_)
35+
36+
#overfit control
37+
lr_estimator = linear_model.LogisticRegression()
38+
lr_grid = {'penalty':['l1', 'l2'], 'C':[0.001, 0.1, 0.5, 1, 10, 1e2] }
39+
final_estimator = cutils.grid_search_best_model(lr_estimator, lr_grid, X_train, y_train)
40+
print(final_estimator.intercept_)
41+
print(final_estimator.coef_)

0 commit comments

Comments
 (0)