Skip to content

Commit c961e6c

Browse files
author
Algorithmica
authored
Add files via upload
1 parent 3c57156 commit c961e6c

File tree

5 files changed

+111
-0
lines changed

5 files changed

+111
-0
lines changed
Lines changed: 20 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,20 @@
1+
import sys
2+
path = 'J://utils'
3+
sys.path.append(path)
4+
5+
import common_utils as utils
6+
import clustering_utils as cl_utils
7+
import classification_utils as cutils
8+
9+
X, y = cl_utils.generate_synthetic_data_2d_clusters(n_samples=300, n_centers=4, cluster_std=0.60)
10+
utils.plot_data_2d(X)
11+
12+
X, _ = cl_utils.generate_synthetic_data_3d_clusters(n_samples=500, n_centers=3, cluster_std=1.4)
13+
utils.plot_data_3d(X)
14+
15+
X, _ = cutils.generate_nonlinear_synthetic_data_classification2(n_samples=300)
16+
utils.plot_data_2d(X)
17+
18+
X, _ = cutils.generate_nonlinear_synthetic_data_classification3(n_samples=300)
19+
utils.plot_data_2d(X)
20+
Lines changed: 24 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,24 @@
1+
import sys
2+
path = 'J://utils'
3+
sys.path.append(path)
4+
5+
from sklearn import cluster
6+
import common_utils as utils
7+
import clustering_utils as cl_utils
8+
9+
X, _= cl_utils.generate_synthetic_data_2d_clusters(n_samples=300, n_centers=4, cluster_std=0.60)
10+
utils.plot_data_2d(X)
11+
12+
kmeans = cluster.KMeans(5)
13+
kmeans.fit(X)
14+
print(kmeans.cluster_centers_)
15+
print(kmeans.labels_)
16+
cl_utils.plot_model_2d_clustering(kmeans, X)
17+
18+
scoring = 's_score'
19+
kmeans_estimator = cluster.KMeans()
20+
kmeans_grid = {'n_clusters':list(range(3,9))}
21+
kmeans_final_model = cl_utils.grid_search_best_model_clustering(kmeans_estimator, kmeans_grid, X, scoring=scoring)
22+
print(kmeans_final_model.labels_)
23+
print(kmeans_final_model.cluster_centers_)
24+
cl_utils.plot_model_2d_clustering(kmeans_final_model, X)
Lines changed: 26 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,26 @@
1+
import sys
2+
path = 'J://utils'
3+
sys.path.append(path)
4+
5+
from sklearn import cluster, manifold
6+
import common_utils as utils
7+
import clustering_utils as cl_utils
8+
import classification_utils as cutils
9+
10+
X, _ = cutils.generate_nonlinear_synthetic_data_classification2(n_samples=300)
11+
utils.plot_data_2d(X)
12+
13+
X, _ = cutils.generate_nonlinear_synthetic_data_classification3(n_samples=300)
14+
utils.plot_data_2d(X)
15+
16+
tsne = manifold.TSNE()
17+
X_tsne = tsne.fit_transform(X)
18+
utils.plot_data_2d(X_tsne)
19+
20+
scoring = 's_score'
21+
kmeans_estimator = cluster.KMeans()
22+
kmeans_grid = {'n_clusters':list(range(2,7))}
23+
kmeans_final_model = cl_utils.grid_search_best_model_clustering(kmeans_estimator, kmeans_grid, X, scoring=scoring)
24+
print(kmeans_final_model.labels_)
25+
print(kmeans_final_model.cluster_centers_)
26+
cl_utils.plot_model_2d_clustering(kmeans_final_model, X)
Lines changed: 23 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,23 @@
1+
import sys
2+
path = 'J://utils'
3+
sys.path.append(path)
4+
5+
from sklearn import cluster
6+
import common_utils as utils
7+
import clustering_utils as cl_utils
8+
import classification_utils as cutils
9+
10+
X, _= cl_utils.generate_synthetic_data_2d_clusters(n_samples=300, n_centers=4, cluster_std=0.60)
11+
utils.plot_data_2d(X)
12+
13+
X, _ = cutils.generate_nonlinear_synthetic_data_classification2(n_samples=300)
14+
utils.plot_data_2d(X)
15+
16+
X, _ = cutils.generate_nonlinear_synthetic_data_classification3(n_samples=300)
17+
utils.plot_data_2d(X)
18+
19+
scoring = 's_score'
20+
agg_estimator = cluster.AgglomerativeClustering()
21+
agg_grid = {'linkage':['ward', 'complete', 'average'], 'n_clusters':list(range(2,7))}
22+
agg_final_model = cl_utils.grid_search_best_model_clustering(agg_estimator, agg_grid, X, scoring=scoring)
23+
cl_utils.plot_model_2d_clustering(agg_final_model, X)
Lines changed: 18 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,18 @@
1+
import sys
2+
path = 'E://utils'
3+
sys.path.append(path)
4+
5+
from sklearn import cluster, mixture
6+
import common_utils as utils
7+
import clustering_utils as cl_utils
8+
9+
X, _= cl_utils.generate_synthetic_data_2d_clusters(n_samples=300, n_centers=4, cluster_std=0.60)
10+
utils.plot_data_2d(X)
11+
12+
scoring = 's_score'
13+
gmm_estimator = mixture.GaussianMixture(n_components=3)
14+
gmm_grid = {'n_components':list(range(10,40))}
15+
gmm_estimator.fit(X)
16+
gmm_estimator.predict(X)
17+
gmm_final_model = cl_utils.grid_search_best_model_clustering(gmm_estimator, gmm_grid, X, scoring=scoring)
18+
cl_utils.plot_model_2d_clustering(gmm_estimator, X)

0 commit comments

Comments
 (0)