This repository has been archived by the owner on Dec 16, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 174
/
Copy pathpair-classification-binary-gender-bias-mitigated-roberta-snli.json
70 lines (70 loc) · 3.75 KB
/
pair-classification-binary-gender-bias-mitigated-roberta-snli.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
{
"id": "pair-classification-binary-gender-bias-mitigated-roberta-snli",
"registered_model_name": "bias_mitigator_applicator",
"registered_predictor_name": "textual_entailment",
"display_name": "Binary Gender Bias-Mitigated RoBERTa SNLI",
"task_id": "textual_entailment",
"model_details": {
"description": "This `Model` implements a basic text classifier with a bias mitigator applicator wrapper. The text is embedded into a text field using a RoBERTa-large model. Following the static embedding layer, the embeddings are projected onto the subspace orthogonal to the binary gender bias subspace. The resulting sequence is pooled using a cls_pooler `Seq2VecEncoder` and then passed to a linear classification layer, which projects into the label space.",
"short_description": "RoBERTa finetuned on SNLI with binary gender bias mitigation.",
"developed_by": "Dev at al",
"contributed_by": "Arjun Subramonian",
"date": "2021-05-20",
"version": "1",
"model_type": "RoBERTa",
"paper": {
"citation": "\n@article{Dev2020OnMA,\ntitle={On Measuring and Mitigating Biased Inferences of Word Embeddings},\nauthor={Sunipa Dev and Tao Li and J. M. Phillips and Vivek Srikumar},\njournal={Proceedings of the AAAI Conference on Artificial Intelligence},\nyear={2020},\nvolume={34},\nnumber={05},\npages={7659-7666},\nDOI={10.1609/aaai.v34i05.6267}\n",
"title": "On Measuring and Mitigating Biased Inferences of Word Embeddings",
"url": "https://api.semanticscholar.org/CorpusID:201670701"
},
"license": null,
"contact": "allennlp-contact@allenai.org"
},
"intended_use": {
"primary_uses": null,
"primary_users": null,
"out_of_scope_use_cases": null
},
"factors": {
"relevant_factors": null,
"evaluation_factors": null
},
"metrics": {
"model_performance_measures": "Accuracy, Net Neutral, Fraction Neutral, Threshold:tau",
"decision_thresholds": null,
"variation_approaches": null
},
"evaluation_data": {
"dataset": {
"name": "On Measuring and Mitigating Biased Gender-Occupation Inferences SNLI Dataset",
"url": "https://github.com/sunipa/On-Measuring-and-Mitigating-Biased-Inferences-of-Word-Embeddings",
"processed_url": "https://storage.googleapis.com/allennlp-public-models/binary-gender-bias-mitigated-snli-dataset.jsonl"
},
"motivation": null,
"preprocessing": null
},
"training_data": {
"dataset": {
"name": "Stanford Natural Language Inference (SNLI) train set",
"url": "https://nlp.stanford.edu/projects/snli/",
"processed_url": "https://allennlp.s3.amazonaws.com/datasets/snli/snli_1.0_train.jsonl"
},
"motivation": null,
"preprocessing": null
},
"quantitative_analyses": {
"unitary_results": "Net Neutral: 0.6417539715766907, Fraction Neutral: 0.7002295255661011, Threshold:0.5: 0.6902161836624146, Threshold:0.7: 0.49243637919425964",
"intersectional_results": null
},
"model_caveats_and_recommendations": {
"caveats_and_recommendations": null
},
"model_ethical_considerations": {
"ethical_considerations": "Binary gender bias mitigation has been applied to this model. Nonetheless, the model will contain residual biases and bias mitigation does not guarantee entirely bias-free inferences."
},
"model_usage": {
"archive_file": "binary-gender-bias-mitigated-snli-roberta.2021-05-20.tar.gz",
"training_config": "pair_classification/binary_gender_bias_mitigated_snli_roberta.jsonnet",
"install_instructions": "pip install allennlp==2.5.0 allennlp-models==2.5.0"
}
}