This NAACL 2021 tutorial will be held on Sunday, June 6, 2021.
- Location: Underline.io link (zoom link available; accessible upon registration)
- Time: 8am-12pm PST / 11am-3pm EST / 3pm-7pm GMT
- Schedule
PST | EST | GMT | Schedule | Location |
---|---|---|---|---|
8-9:30 | 11-12:30 | 3-4:30 | Watch Part 1, 2 and 3 | Prerecorded videos |
9:30-10 | 12:30-1 | 4:30-5 | Break + Optional QnA | Zoom |
10-11 |
1-2 |
5-6 |
Watch Part 4 and 5 | Prerecorded videos |
QnA | Zoom |
- Iz Beltagy (Al2)
beltagy@allenai.org
- Arman Cohan (Al2)
armanc@allenai.org
- Hanna Hajishirzi (UW, Al2)
hannaneh@cs.washington.edu
- Sewon Min (UW)
sewon@cs.washington.edu
- Matthew Peters (AI2)
matthewp@allenai.org
- Part 1. Intro & Overview of tasks
- Part 2. Graph based methods
- Part 3. Long sequence transformers
- Part 4. Pretraining and finetuning
- Part 5. Use cases
- Part 6. Future work & conclusion
Note: Parts 5 and 6 are presented in the 5th video on Underline.
- Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, Christopher Potts. Learning Word Vectors for Sentiment Analysis
- Johannes Kiesel, Maria Mestre, Rishabh Shukla, Emmanuel Vincent, Payam Adineh, David Corney, Benno Stein, Martin Potthast. SemEval-2019 Task 4: Hyperpartisan News Detection
- Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov, Christopher D. Manning. 2018. HotpotQA: A Dataset for Diverse, Explainable Multi-hop Question Answering
- Johannes Welbl, Pontus Stenetorp, Sebastian Riedel. 2018. Constructing Datasets for Multi-hop Reading Comprehension Across Documents
- Courtney Napoles, Matthew Gormley, Benjamin Van Durme. 2012. Annotated Gigaword
- Arman Cohan, Franck Dernoncourt, Doo Soon Kim, Trung Bui, Seokhwan Kim, Walter Chang, Nazli Goharian. 2018. A Discourse-Aware Attention Model for Abstractive Summarization of Long Documents
- Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, Eduard Hovy. 2016. Hierarchical Attention Networks for Document Classification
- Sarthak Jain, Madeleine van Zuylen, Hannaneh Hajishirzi, Iz Beltagy. 2020. SciREX: A Challenge Dataset for Document-Level Information Extraction
- Ming-Wei Chang, Kristina Toutanova, Kenton Lee, Jacob Devlin. 2019. Language Model Pre-training for Hierarchical Document Representation
- Xingxing Zhang, Furu Wei, Ming Zhou. 2019. HIBERT: Document Level Pre-training of Hierarchical Bidirectional Transformers for Document Summarization
- Kenton Lee, Luheng He, Luke Zettlemoyer. 2018. Higher-order Coreference Resolution with Coarse-to-fine Inference
- David Wadden, Ulme Wennberg, Yi Luan, Hannaneh Hajishirzi. 2019. Entity, Relations, and Event Extraction with Contextualized Span Representations
- Linfeng Song, Zhiguo Wang, Mo Yu, Yue Zhang, Radu Florian, Daniel Gildea. 2018. Exploring Graph-structured Passage Representation for Multi-hop Reading Comprehension with Graph Neural Networks
- Yunxuan Xiao, Yanru Qu, Lin Qiu, Hao Zhou, Lei Li, Weinan Zhang, Yong Yu. 2019. Dynamically Fused Graph Network for Multi-hop Reasoning
- Yuwei Fang, Siqi Sun, Zhe Gan, Rohit Pillai, Shuohang Wang, Jingjing Liu. 2020. Hierarchical Graph Network for Multi-hop Question Answering
- Sewon Min, Danqi Chen, Luke Zettlemoyer, Hannaneh Hajishirzi. 2019. Knowledge-guided Text Retrieval and Reading for Open Domain Question Answering
- Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov. 2019. Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context
- Jack W. Rae, Anna Potapenko, Siddhant M. Jayakumar, Timothy P. Lillicrap. 2019. Compressive Transformers for Long-Range Sequence Modelling
- Aurko Roy, Mohammad Saffar, Ashish Vaswani, David Grangier. 2020. Efficient Content-Based Sparse Attention with Routing Transformers
- Yi Tay, Dara Bahri, Liu Yang, Donald Metzler, Da-Cheng Juan. 2020. Sparse Sinkhorn Attention
- Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya. 2020. Reformer: The Efficient Transformer
- Rewon Child, Scott Gray, Alec Radford, Ilya Sutskever. 2019. Generating Long Sequences with Sparse Transformers
- Iz Beltagy, Matthew E. Peters, Arman Cohan. 2020. Longformer: The Long-Document Transformer
- Joshua Ainslie, Santiago Ontanon, Chris Alberti, Vaclav Cvicek, Zachary Fisher, Philip Pham, Anirudh Ravula, Sumit Sanghai, Qifan Wang, Li Yang. 2020. ETC: Encoding Long and Structured Inputs in Transformers
- Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed. 2020. Big Bird: Transformers for Longer Sequences
- Tom B. Brown et al. 2020. Language Models are Few-Shot Learners
- Scott Gray, Alec Radford and Diederik P. Kingma. 2017. GPU Kernels for Block-Sparse Weights
- Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, François Fleuret. 2020. Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention
- Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, David Belanger, Lucy Colwell, Adrian Weller. 2020. Rethinking Attention with Performers
- Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah A. Smith, Lingpeng Kong. 2021. Random Feature Attention
- Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, Hao Ma. 2020. Linformer: Self-Attention with Linear Complexity
- Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao, Liu Yang, Sebastian Ruder, Donald Metzler. 2020. Long Range Arena: A Benchmark for Efficient Transformers
- Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh. 2021. Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention
- Ofir Press, Noah A. Smith, Mike Lewis. 2020. Shortformer: Better Language Modeling using Shorter Inputs
- Avi Caciularu, Arman Cohan, Iz Beltagy, Matthew E. Peters, Arie Cattan, Ido Dagan. 2021. Cross-Document Language Modeling