Skip to content

High-performance functions for the triangular distribution

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md
Notifications You must be signed in to change notification settings

alvindev0/triangulr

Repository files navigation

triangulr

Build Codecov CRAN Downloads Downloads Overall Lifecycle: stable

Introduction

The triangulr package provides high-performance triangular distribution functions which includes density function, distribution function, quantile function, random variate generator, moment generating function, and expected shortfall function for the triangular distribution.

Installation

You can install the released version of triangulr from CRAN with:

install.packages("triangulr")

And the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("irkaal/triangulr")

Example

These are basic examples of using the included functions:

library(triangulr)

Using the density function, dtri().

x <- c(0.1, 0.5, 0.9)

dtri(x,
     min = 0,
     max = 1,
     mode = 0.5)
#> [1] 0.4 2.0 0.4

dtri(x,
     min = c(0, 0, 0),
     max = 1,
     mode = 0.5)
#> [1] 0.4 2.0 0.4

Using the distribution function, ptri().

q <- c(0.1, 0.5, 0.9)

1 - ptri(q, lower_tail = FALSE)
#> [1] 0.02 0.50 0.98

ptri(q, lower_tail = TRUE)
#> [1] 0.02 0.50 0.98

ptri(q, log_p = TRUE)
#> [1] -3.91202301 -0.69314718 -0.02020271

log(ptri(q, log_p = FALSE))
#> [1] -3.91202301 -0.69314718 -0.02020271

Using the quantile function, qtri().

p <- c(0.1, 0.5, 0.9)

qtri(1 - p, lower_tail = FALSE)
#> [1] 0.2236068 0.5000000 0.7763932

qtri(p, lower_tail = TRUE)
#> [1] 0.2236068 0.5000000 0.7763932

qtri(log(p), log_p = TRUE)
#> [1] 0.2236068 0.5000000 0.7763932

qtri(p, log_p = FALSE)
#> [1] 0.2236068 0.5000000 0.7763932

Using the random variate generator, rtri().

n <- 3

set.seed(1)
rtri(n,
     min = 0,
     max = 1,
     mode = 0.5)
#> [1] 0.3643547 0.4313490 0.5378601

set.seed(1)
rtri(n,
     min = c(0, 0, 0),
     max = 1,
     mode = 0.5)
#> [1] 0.3643547 0.4313490 0.5378601

Using the moment generating function, mgtri().

t <- c(1, 2, 3)

mgtri(t,
      min = 0,
      max = 1,
      mode = 0.5)
#> [1] 1.683357 2.952492 5.387626

mgtri(t,
      min = c(0, 0, 0),
      max = 1,
      mode = 0.5)
#> [1] 1.683357 2.952492 5.387626

Using the expected shortfall function, estri().

p <- c(0.1, 0.5, 0.9)

estri(p,
      min = 0,
      max = 1,
      mode = 0.5)
#> [1] 0.1490712 0.3333333 0.4610079

estri(p,
      min = c(0, 0, 0),
      max = 1,
      mode = 0.5)
#> [1] 0.1490712 0.3333333 0.4610079