Skip to content

amandasd/L2G-LAMMPS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

52 Commits
 
 
 
 
 
 

Repository files navigation

Learning to Grow for LAMMPS

Solution is an array of real values that represents a neural network
Changes must be made to the module_lammps.py file according to your LAMMPS simulation

Run on Cori GPU

Define the LAMMPS_DIR environment variable in scripts/submit.sh according to the directory where your lmp executable is located.

sbatch ./scripts/submit.sh

or

module purge 
module load cgpu 
module load cmake 
module load PrgEnv-llvm/12.0.0-git_20210117
module load python/3.8-anaconda-2020.11 

export LAMMPS_DIR=<lmp executable directory>
export OMP_NUM_THREADS=1

salloc -C gpu -N <number of nodes> -G <number of gpus> -t <time> -A <account> --exclusive -q special

source activate myenv-3.8
python3.8 scripts/run_l2g.py -help
python3.8 scripts/run_l2g.py -gpus <number of gpus> -gen <number of generations> -pop <population size> -mr <mutation rate> -ms <mutation sigma> -ts <tournament size> -best <number of retained solutions> -elitism -hid <number of hidden nodes> -restart -tmin <minimum temperature> -tmax <maximum temperature> -pmin <minimum pressure> -pmax <maximum pressure> -opt <option to initialize temperature and pressure> -vtemp <initial temperature> -vpress <initial pressure> -tf <temperature factor> -pf <pressure factor>
conda deactivate

Reference

Paper

S. Whitelam, I. Tamblyn. "Learning to grow: control of materials self-assembly using evolutionary reinforcement learning". Phys. Rev. E, 2020. DOI: 10.1103/PhysRevE.101.052604

Site

https://machinelearningmastery.com/simple-genetic-algorithm-from-scratch-in-python/

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published