Skip to content

This Repository contains the necessary code to reproduce the results from my bachelors thesis "Eine empirische Analyse von Prior-Daten Konflikte in Bayesianischen neuronalen Netzen"

Notifications You must be signed in to change notification settings

amarquard089/PDCsInBNNs

Repository files navigation

Eine empirische Analyse von Prior-Daten Konflikten in Bayesianischen neuronalen Netzen

This Repository contains the necessary code to reproduce the results from the bachelors thesis "Eine empirische Analyse von Prior-Daten Konflikte in Bayesianischen neuronalen Netzen".

Contents

  • bilder: Contains the pictures used in the bachelor thesis
  • simple_BNN.ipynb: Contains the code for the analysis in chapter 4.1
  • deep_BNN_fix_first_two_layers.ipynb: Contains the code for the analysis in chapter 4.2.1
  • deep_BNN_full.ipynb: Contains the code for the analysis in chapter 4.2.2

Usage

To create the environment run

conda env create -f requirements.yml

and

conda activate pdcsinbnns

After that you can just use jupyter-lab / jupyter-notebook or VSCode with the appropriate extensions in order to run the notebooks.
The pictures in the folder "bilder" where modified using sips, e.g.

sips -z 800 1600 bilder/LM_10.png

Analogous they can be modified folderwise as

for filename in ./*png; do
    sips -z 800 1600 $filename
done

About

This Repository contains the necessary code to reproduce the results from my bachelors thesis "Eine empirische Analyse von Prior-Daten Konflikte in Bayesianischen neuronalen Netzen"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published