forked from geodynamics/hc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
hc_torsol.c
269 lines (256 loc) · 8.03 KB
/
hc_torsol.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
#include "hc.h"
//
//
// these subroutines deal with the toroidal part of the
// kinematic solution of a Hager &
// O'Connell flow code. they are based on Brad's original code, and later
// Bernhard Steinberger's modifications
//
// will incorporate the poloidal part of the plate velocities
//
//
// Thorsten Becker, twb@usc.edu
//
// $Id: hc_torsol.c,v 1.8 2006/01/22 01:11:34 becker Exp becker $
//
// ****************************************************************
// * THIS IS THE MAIN PROGRAM FOR THE COMPONENT OF FLOW WITHOUT *
// * DENSITY CONTRASTS. IT USES SEVERAL INPUT/OUTPUT SUBROUTINES *
// * AND FUNCTIONS TO OBTAIN, CORRECT AND VERIFY A MODEL FROM THE *
// * USER. THE FINAL VERSION OF EACH MODEL IS STORED IN A FILE *
// * BEFORE THE PROGRAM EXECUTES POLSOL AND TORSOL TO OBTAIN THE *
// * POLOIDAL AND TOROIDAL COMPONENTS, RESPECTIVELY, OF THE *
// * EQUATIONS OF MOTION. *
// ****************************************************************
// Modified such that only toroidal component is calculated
// Poloidal component is included in densub.f
//
// input: r: radii on which output is defined (nrad+2)
//
// visc,rvisc: normalized viscosities and their radii (nvis)
//
// lmax: MAXIMUM DEGREES,
// nrad: NUMBER OF OUTPUT RADII
// (without top and bottom layers)
// nvis: NUMBER OF VISCOSITIES.
//
// pvel_tor: toroidal part of the plate velocities
// pkernel: print the two solution vectors to file
//
// input/output:
//
// tvec[nradp2 * lmaxp1 * 2 ]: solution kernel
//
// output:
//
// tor_sol[nradp2 * 2] SHOULD BE PASSED INITIALIZED AS ZEROES
//
//
//
//
void hc_torsol(struct hcs *hc,
int nrad,int nvis,int lmax,HC_PREC *r,
HC_PREC **rv,HC_PREC **visc, struct sh_lms *pvel_tor,
struct sh_lms *tor_sol,HC_HIGH_PREC *tvec,
hc_boolean verbose)
{
//
// ****************************************************************
// * evaluates AND PROPAGATES THE TWO TOROIDAL COMPONENTS IN THE *
// * EQUATIONS OF MOTION, AND NORMALIZES THESE SUCH THAT THE *
// * FIRST ELEMENT AT THE SURFACE IS 1.0. *
// ****************************************************************
//
HC_HIGH_PREC coef,*vecnor,hold,rlast,rnext,tloc[2],*tvec1,*tvec2;
HC_HIGH_PREC exp_fac[2],p[2][2],diflog,el,elp2,elm1,efdiff;
int l,jvisp1,jvis,i,j,nvisp1,lmaxp1,os;
hc_boolean qvis;
//
// PASSED PARAMETERS: NRADP2: NUMBER OF OUTPUT RADII,
// NVIS: NUMBER OF VISCOSITIES, nvisp1 = nvis+1
// LMAX: MAXIMUM DEGREES.
// ARRAYS: R: OUTPUT RADII,
// RV: VISCOSITY RADII,
// TVEC: TOROIDAL VECTORS,
// VISC: normalized VISCOSITIES.
// OTHER VAR: EXP_FAC[0],EXP_FAC[1]: EXPONENTIAL FACTORS IN PROPAGATOR,
// COEF,ELP2,ELM1: PARAMETERS IN PROPAGATOR,
// DIFLOG: DIFFERENCE IN LOGS OF RADII,
// EL,L: DEGREE,
// VECNOR: NORMALIZES TVEC_LOC TO TVEC(N,1),
// HOLD: TEMPORARY VAR.,
// P[0][0],P[0][1],P[1][0],P[1][1]: ELEMENTS OF THE PROPAGATOR MATRIX CORRES-
// PONDING TO P(1,1),P(1,2),P(2,1),P(2,2) RESPECTIVELY,
// RLAST,RNEXT: RADII FOR PROPAGATOR,
// TVEC_LOC1,TVEC_LOC2: VECTOR COMPONENTS.
//
/*
set up some pointers (without those the TVECSOL macro won't
work!)
*/
nvisp1 = nvis + 1; /* length of rv and visc */
//nradp2 = nrad + 2; /* radius array */
lmaxp1 = lmax+1; /* length of 0:lmax array */
/*
add one item at end of rv and visc arrays
*/
hc_dvecrealloc(rv,nvisp1,"hc_torsol: rv");
hc_dvecrealloc(visc,nvisp1,"hc_torsol: visc");
/* local reference to viscosity and radii of viscosity */
#define HC_TVISC(i) (*(*visc+(i)))
#define HC_TVR(i) (*(*rv+(i)))
HC_TVR(nvis) = 1.1; /* last entry in radius array, why is
this 1.1? probably because it has to
be > 1
*/
HC_TVISC(nvis) = HC_TVISC(nvis-1); /* last entry in viscosity array */
#ifdef DEBUG
if(hc->nradp2 != nrad + 2){
fprintf(stderr,"hc_torsol: radius number mismatch\n");
exit(-1);
}
/*
test size of expansions
*/
j = hc->nradp2 * 2;
for(i=0;i < j;i++){
if(tor_sol[i].lmax < pvel_tor->lmax){
fprintf(stderr,"hc_torsol: error: toroidal expansion %i has lmax %i, plates have %i\n",
i+1,tor_sol[i].lmax, pvel_tor->lmax);
exit(-1);
}
if(tor_sol[i].type != pvel_tor->type)
HC_ERROR("hc_torsol","torsol type error");
}
#endif
if(verbose)
fprintf(stderr,"hc_torsol: toroidal velocities lmax %i and type %i\n",
pvel_tor->lmax,pvel_tor->type);
/*
make room for toroidal scaling vectors f(l) and initialize as zeroes
*/
/* solution factors as f(l,r) */
/* set local pointes */
tvec1 = tvec;
tvec2 = (tvec + hc->nradp2 * lmaxp1);
//
// (PREVENTS THE REQUESTING OF NON-EXISTANT VALUES)
//
// FOR EACH DEGREE (L) CALCULATE, NORMALIZE AND OUTPUT SOLUTION
//
for(l=1;l < lmaxp1;l++){
/*
loop through all l > 0
*/
el = (HC_PREC)l;
//
// SET THE PARAMETERS
//
elp2 = el + 2.0;
elm1 = el - 1.0;
coef = 1.0 / (2.0 * el + 1.0);
//
// INITIALIZE THE PROPAGATION AT THE CORE
//
jvisp1 = 1; /* viscosity layer counters */
jvis = 0;
rlast = r[0]; /* radius of core */
/*
initialize
*/
tloc[0] = 1.0; /* there seems to be no best ordering for
addressing this array, later we need l to
be the fastest increasing index */
tloc[1] = 0.0;
//
// FIND THE TWO TOROIDAL COMPONENTS AT EACH RADIUS
// start radius loop
//
/*
lowest level
*/
os = l;
tvec1[os] = tloc[0];
tvec2[os] = tloc[1];
for(i=1;i < hc->nradp2;i++){ /* loop through radii */
os += lmaxp1;
//
// TEST FOR CHANGE IN VISCOSITY IN NEXT LAYER
//
qvis = FALSE;
do{
if(HC_TVR(jvisp1) > r[i])
qvis = TRUE;
rnext = HC_TVR(jvisp1); /* */
//
// IF NO VISC. CHANGE BEFORE NEXT OUTPUT RADIUS, PROPAGATE DIRECTLY
//
if(qvis)
rnext = r[i];
diflog = log(rnext / rlast);
exp_fac[0] = exp( el * diflog);
exp_fac[1] = exp(-(el + 1.0) * diflog);
//
// PROPAGATOR SET UP LINEARLY TO AVOID EXCESS MULTIPLICATIONS
//
efdiff = exp_fac[0] - exp_fac[1];
p[0][0] = elp2 * exp_fac[0] + elm1 * exp_fac[1];
p[0][1] = efdiff / HC_TVISC(jvis);
p[1][0] = elp2 * elm1 * HC_TVISC(jvis) * efdiff;
p[1][1] = elm1 * exp_fac[0] + elp2 * exp_fac[1];
//
// PROPAGATE LAST VECTOR TO GET NEW VECTOR
//
rlast = rnext;
hold = tloc[0];
tloc[0] = (p[0][0] * hold + p[0][1] * tloc[1]);
tloc[1] = (p[1][0] * hold + p[1][1] * tloc[1]);
tloc[0] *= coef;
tloc[1] *= coef;
if(!qvis){
jvis = jvisp1;
jvisp1++;
}
}while(!qvis);
tvec1[os] = tloc[0];
tvec2[os] = tloc[1];
} /* end layer loop */
} /* end l loop */
//
// set tvec(l,nradp2-1,0) = 1.0 and normalize all vectors to
// this
//
hc_hvecalloc(&vecnor,lmaxp1,"hc_torsol: vecnor");
os = (hc->nradp2-1) * lmaxp1;
vecnor[0] = 1.0;
for(l=1;l < lmaxp1;l++)
vecnor[l] = 1.0 / tvec1[os+l];
/* normalize */
for(i=os=0;i < hc->nradp2;i++,os+=lmaxp1)
for(l=0;l < lmaxp1;l++){
tvec1[os+l] *= vecnor[l];
tvec2[os+l] *= vecnor[l];
}
free(vecnor);
/*
the toroidal solution corresponds to the toroidal part of the plate
motions scaled by the toroidal solution vectors which are functions
of l and depth
*/
for(os=i=j=0;i < hc->nradp2;i++,os+=lmaxp1,j+=2){
/*
assign toroidal plate motion fields to solution expansion
*/
sh_aexp_equals_bexp_coeff((tor_sol+j+0),pvel_tor);
sh_aexp_equals_bexp_coeff((tor_sol+j+1),pvel_tor);
/*
scale with the toroidal solution at this depth
*/
sh_scale_expansion_l_factor((tor_sol+j+0),(tvec1+os));
sh_scale_expansion_l_factor((tor_sol+j+1),(tvec2+os));
}
if(verbose)
fprintf(stderr,"hc_torsol: done\n");
}
#undef HC_TVISC
#undef HC_TVR