Skip to content
master
Go to file
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 

README.md

3DMV

3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans. This work is based on our ECCV'18 paper, 3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene Segmentation.

Code

Installation:

Training is implemented with PyTorch. This code was developed under PyTorch 0.2 and recently upgraded to PyTorch 0.4.

Training:

  • See python train.py --help for all train options. Example train call:
python train.py --gpu 0 --train_data_list [path to list of train files] --data_path_2d [path to 2d image data] --class_weight_file [path to txt file of train histogram] --num_nearest_images 5 --model2d_path [path to pretrained 2d model]

Testing

  • See python test.py --help for all test options. Example test call:
python test.py --gpu 0 --scene_list [path to list of test scenes] --model_path [path to trained model.pth] --data_path_2d [path to 2d image data] --data_path_3d [path to test scene data] --num_nearest_images 5 --model2d_orig_path [path to pretrained 2d model]

Data:

This data has been precomputed from the ScanNet (v2) dataset.

  • Train data for ScanNet v2: 3dmv_scannet_v2_train.zip (6.2G)
    • 2D train images can be processed from the ScanNet dataset using the 2d data preparation script in prepare_data
    • Expected file structure for 2D data:
    scene0000_00/
    |--color/
       |--[framenum].jpg
           ⋮
    |--depth/
       |--[framenum].png   (16-bit pngs)
           ⋮
    |--pose/
       |--[framenum].txt   (4x4 rigid transform as txt file)
           ⋮
    |--label/    (if applicable)
       |--[framenum].png   (8-bit pngs)
           ⋮
    scene0000_01/
    ⋮
    
  • Test scenes for ScanNet v2: 3dmv_scannet_v2_test_scenes.zip (110M)

Citation:

If you find our work useful in your research, please consider citing:

@inproceedings{dai20183dmv,
 author = {Dai, Angela and Nie{\ss}ner, Matthias},
 booktitle = {Proceedings of the European Conference on Computer Vision ({ECCV})},
 title = {3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene Segmentation},
 year = {2018}
}

Contact:

If you have any questions, please email Angela Dai at adai@cs.stanford.edu.

About

[ECCV'18] 3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene Segmentation

Topics

Resources

License

Releases

No releases published

Packages

No packages published

Languages

You can’t perform that action at this time.