forked from rcpsl/PeregriNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathperegriNN.py
executable file
·159 lines (136 loc) · 5.52 KB
/
peregriNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
from solver import *
from time import time,sleep
from random import random, seed
import numpy as np
import signal
import sys,os
import glob
from NeuralNetwork import *
from multiprocessing import Process, Value
import argparse
from os import path
eps = 1E-10
adv_target = -1
class TimeOutException(Exception):
def __init__(self, *args, **kwargs):
pass
def print_summary(network,prop, safety, time, extra = None):
if(extra is not None):
print(network[14:19],prop,safety,time,extra)
else:
print(network[14:19],prop,safety,time)
def alarm_handler(signum, frame):
raise TimeOutException()
def check_property(network,x,target):
global adv_target
u = network.evaluate(x).flatten()
print(u)
v_adv = u[adv_target]
max_idx = np.argmax(u)
if u[max_idx] - v_adv <= eps:
print("Potential CE succeeded")
return True
return False
def check_prop_samples(nn,samples,target):
outs = nn.evaluate(samples.T).T
outs = np.argmax(outs,axis = 1)
return np.any(outs != target)
def run_instance(network, input_bounds, check_property, target, out_idx, adv_found,convex_calls = 0, max_depth =30):
try:
solver = Solver(network = network,property_check=check_property,target = target,convex_calls=convex_calls,MAX_DEPTH=max_depth)
# input_vars = [solver.state_vars[i] for i in range(len(solver.state_vars))]
A = np.eye(network.image_size)
lower_bound = input_bounds[:,0]
upper_bound = input_bounds[:,1]
solver.add_linear_constraints(A,solver.in_vars_names,lower_bound,GRB.GREATER_EQUAL)
solver.add_linear_constraints(A,solver.in_vars_names,upper_bound,GRB.LESS_EQUAL)
output_vars = [solver.out_vars[i] for i in range(len(solver.out_vars))]
for other_out_idx in [i for i in range(network.output_size) if i != out_idx]:
A = np.zeros(network.output_size)
A[out_idx] = 1 #out_idx is label of the adversarial target
A[other_out_idx] = -1 #other_out_idx is every other output
b = [eps]
solver.add_linear_constraints([A],solver.out_vars_names,b,GRB.GREATER_EQUAL)
solver.preprocessing = False
vars,status = solver.solve()
if(status == 'SolFound'):
adv_found.value = 1
return status
# print('Terminated')
except Exception as e:
raise e
def main(args):
#Parse args
nnet = args.network
index = int(args.image)
delta = float(args.eps)
global adv_target
adv_target = int(args.target_label)
TIMEOUT = int(args.timeout)
MAX_DEPTH = int(args.timeout)
#Init NN structure
nn = NeuralNetworkStruct()
nn.parse_network(nnet,type = 'mnist')
# print('Loaded network:',nnet)
from tensorflow.keras.datasets import mnist
(X_train, Y_train), (X_test, Y_test) = mnist.load_data()
image = np.array(X_test[index]).reshape((-1,1))/255.0
output = nn.evaluate(image)
target = np.argmax(output)
nn.set_target(target)
other_ouputs = [i for i in range(nn.output_size) if i != target]
print("Checking counter example test/counter-example.npy")
x = np.load("test/counter-example.npy")
x = x.reshape(-1,1)
print(check_property(nn,x,target))
signal.signal(signal.SIGALRM, alarm_handler)
signal.alarm(TIMEOUT)
try:
start_time = time()
# print('Norm:',delta)
#Solve the problem for each other output
lb = np.maximum(image-delta,0.0)
ub = np.minimum(image+delta,1.0)
assert(np.sum(np.greater_equal(x, lb - eps)) == 784)
assert(np.sum(np.greater_equal(ub + eps, x)) == 784)
input_bounds = np.concatenate((lb,ub),axis = 1)
#samples = sample_network(nn,input_bounds,15000)
#SAT = check_prop_samples(nn,samples,target)
SAT = False
if(SAT):
# adv +=1
print_summary(nnet,img_name,'unsafe',time()-start_time)
return
nn.set_bounds(input_bounds)
out_list_ub = copy(nn.layers[nn.num_layers-1]['conc_ub'])
other_ouputs = np.flip(np.argsort(out_list_ub,axis = 0)).flatten().tolist()
other_ouputs = [idx for idx in other_ouputs if idx!= target and out_list_ub[idx] > 0]
adv_found = Value('i',0)
result = ''
for out_idx in [adv_target]:
if 0 > nn.layers[len(nn.layers)-1]['conc_ub'][out_idx]:
continue
#print('Testing Adversarial with label', out_idx)
network = deepcopy(nn)
result = run_instance(network, input_bounds, check_property, target, out_idx,adv_found,max_depth = MAX_DEPTH)
if(result == 'SolFound'):
break
#signal.alarm(0)
if(result == 'SolFound'):
print("sat")
#print_summary(nnet,img_name,'unsafe',time() - start_time)
else:
print("unsat")
#print_summary(nnet,img_name,'safe',time()-start_time)
except TimeOutException:
print_summary(nnet,img_name,'timeout',TIMEOUT)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="PeregriNN model checker")
parser.add_argument('network',help="path to neural network nnet file")
parser.add_argument('image',help="path to image file")
parser.add_argument('eps',help="eps perturbation")
parser.add_argument('target_label',help="target label")
parser.add_argument('--timeout',default=300,help="timeout value")
parser.add_argument('--max_depth',default=30,help="Maximum exploration depth")
args = parser.parse_args()
main(args)