|
| 1 | +/* |
| 2 | + * Licensed to the Apache Software Foundation (ASF) under one or more |
| 3 | + * contributor license agreements. See the NOTICE file distributed with |
| 4 | + * this work for additional information regarding copyright ownership. |
| 5 | + * The ASF licenses this file to You under the Apache License, Version 2.0 |
| 6 | + * (the "License"); you may not use this file except in compliance with |
| 7 | + * the License. You may obtain a copy of the License at |
| 8 | + * |
| 9 | + * http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | + * |
| 11 | + * Unless required by applicable law or agreed to in writing, software |
| 12 | + * distributed under the License is distributed on an "AS IS" BASIS, |
| 13 | + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 14 | + * See the License for the specific language governing permissions and |
| 15 | + * limitations under the License. |
| 16 | + */ |
| 17 | + |
| 18 | +package org.apache.kyuubi.engine.trino.schema |
| 19 | + |
| 20 | +import java.nio.ByteBuffer |
| 21 | +import java.nio.charset.StandardCharsets |
| 22 | + |
| 23 | +import scala.collection.JavaConverters._ |
| 24 | + |
| 25 | +import io.trino.client.ClientStandardTypes._ |
| 26 | +import io.trino.client.Column |
| 27 | +import io.trino.client.Row |
| 28 | +import org.apache.hive.service.rpc.thrift.TBinaryColumn |
| 29 | +import org.apache.hive.service.rpc.thrift.TBoolColumn |
| 30 | +import org.apache.hive.service.rpc.thrift.TBoolValue |
| 31 | +import org.apache.hive.service.rpc.thrift.TByteColumn |
| 32 | +import org.apache.hive.service.rpc.thrift.TByteValue |
| 33 | +import org.apache.hive.service.rpc.thrift.TColumn |
| 34 | +import org.apache.hive.service.rpc.thrift.TColumnValue |
| 35 | +import org.apache.hive.service.rpc.thrift.TDoubleColumn |
| 36 | +import org.apache.hive.service.rpc.thrift.TDoubleValue |
| 37 | +import org.apache.hive.service.rpc.thrift.TI16Column |
| 38 | +import org.apache.hive.service.rpc.thrift.TI16Value |
| 39 | +import org.apache.hive.service.rpc.thrift.TI32Column |
| 40 | +import org.apache.hive.service.rpc.thrift.TI32Value |
| 41 | +import org.apache.hive.service.rpc.thrift.TI64Column |
| 42 | +import org.apache.hive.service.rpc.thrift.TI64Value |
| 43 | +import org.apache.hive.service.rpc.thrift.TProtocolVersion |
| 44 | +import org.apache.hive.service.rpc.thrift.TRow |
| 45 | +import org.apache.hive.service.rpc.thrift.TRowSet |
| 46 | +import org.apache.hive.service.rpc.thrift.TStringColumn |
| 47 | +import org.apache.hive.service.rpc.thrift.TStringValue |
| 48 | + |
| 49 | +import org.apache.kyuubi.util.RowSetUtils.bitSetToBuffer |
| 50 | + |
| 51 | +object RowSet { |
| 52 | + |
| 53 | + def toTRowSet( |
| 54 | + rows: Seq[List[_]], |
| 55 | + schema: List[Column], |
| 56 | + protocolVersion: TProtocolVersion): TRowSet = { |
| 57 | + if (protocolVersion.getValue < TProtocolVersion.HIVE_CLI_SERVICE_PROTOCOL_V6.getValue) { |
| 58 | + toRowBasedSet(rows, schema) |
| 59 | + } else { |
| 60 | + toColumnBasedSet(rows, schema) |
| 61 | + } |
| 62 | + } |
| 63 | + |
| 64 | + def toRowBasedSet(rows: Seq[List[_]], schema: List[Column]): TRowSet = { |
| 65 | + val tRows = rows.map { row => |
| 66 | + val tRow = new TRow() |
| 67 | + (0 until row.size).map(i => toTColumnValue(i, row, schema)) |
| 68 | + .foreach(tRow.addToColVals) |
| 69 | + tRow |
| 70 | + }.asJava |
| 71 | + new TRowSet(0, tRows) |
| 72 | + } |
| 73 | + |
| 74 | + def toColumnBasedSet(rows: Seq[List[_]], schema: List[Column]): TRowSet = { |
| 75 | + val size = rows.size |
| 76 | + val tRowSet = new TRowSet(0, new java.util.ArrayList[TRow](size)) |
| 77 | + schema.zipWithIndex.foreach { case (filed, i) => |
| 78 | + val tColumn = toTColumn( |
| 79 | + rows, |
| 80 | + i, |
| 81 | + filed.getType) |
| 82 | + tRowSet.addToColumns(tColumn) |
| 83 | + } |
| 84 | + tRowSet |
| 85 | + } |
| 86 | + |
| 87 | + private def toTColumn( |
| 88 | + rows: Seq[Seq[Any]], |
| 89 | + ordinal: Int, |
| 90 | + typ: String): TColumn = { |
| 91 | + val nulls = new java.util.BitSet() |
| 92 | + typ match { |
| 93 | + case BOOLEAN => |
| 94 | + val values = getOrSetAsNull[java.lang.Boolean](rows, ordinal, nulls, true) |
| 95 | + TColumn.boolVal(new TBoolColumn(values, nulls)) |
| 96 | + |
| 97 | + case TINYINT => |
| 98 | + val values = getOrSetAsNull[java.lang.Byte](rows, ordinal, nulls, 0.toByte) |
| 99 | + TColumn.byteVal(new TByteColumn(values, nulls)) |
| 100 | + |
| 101 | + case SMALLINT => |
| 102 | + val values = getOrSetAsNull[java.lang.Short](rows, ordinal, nulls, 0.toShort) |
| 103 | + TColumn.i16Val(new TI16Column(values, nulls)) |
| 104 | + |
| 105 | + case INTEGER => |
| 106 | + val values = getOrSetAsNull[java.lang.Integer](rows, ordinal, nulls, 0) |
| 107 | + TColumn.i32Val(new TI32Column(values, nulls)) |
| 108 | + |
| 109 | + case BIGINT => |
| 110 | + val values = getOrSetAsNull[java.lang.Long](rows, ordinal, nulls, 0L) |
| 111 | + TColumn.i64Val(new TI64Column(values, nulls)) |
| 112 | + |
| 113 | + case REAL => |
| 114 | + val values = getOrSetAsNull[java.lang.Float](rows, ordinal, nulls, 0.toFloat) |
| 115 | + .asScala.map(n => java.lang.Double.valueOf(n.toDouble)).asJava |
| 116 | + TColumn.doubleVal(new TDoubleColumn(values, nulls)) |
| 117 | + |
| 118 | + case DOUBLE => |
| 119 | + val values = getOrSetAsNull[java.lang.Double](rows, ordinal, nulls, 0.toDouble) |
| 120 | + TColumn.doubleVal(new TDoubleColumn(values, nulls)) |
| 121 | + |
| 122 | + case VARCHAR => |
| 123 | + val values = getOrSetAsNull[String](rows, ordinal, nulls, "") |
| 124 | + TColumn.stringVal(new TStringColumn(values, nulls)) |
| 125 | + |
| 126 | + case VARBINARY => |
| 127 | + val values = getOrSetAsNull[Array[Byte]](rows, ordinal, nulls, Array()) |
| 128 | + .asScala |
| 129 | + .map(ByteBuffer.wrap) |
| 130 | + .asJava |
| 131 | + TColumn.binaryVal(new TBinaryColumn(values, nulls)) |
| 132 | + |
| 133 | + case _ => |
| 134 | + val values = rows.zipWithIndex.map { case (row, i) => |
| 135 | + nulls.set(i, row(ordinal) == null) |
| 136 | + if (row(ordinal) == null) { |
| 137 | + "" |
| 138 | + } else { |
| 139 | + toHiveString((row(ordinal), typ)) |
| 140 | + } |
| 141 | + }.asJava |
| 142 | + TColumn.stringVal(new TStringColumn(values, nulls)) |
| 143 | + } |
| 144 | + } |
| 145 | + |
| 146 | + private def getOrSetAsNull[T]( |
| 147 | + rows: Seq[Seq[Any]], |
| 148 | + ordinal: Int, |
| 149 | + nulls: java.util.BitSet, |
| 150 | + defaultVal: T): java.util.List[T] = { |
| 151 | + val size = rows.length |
| 152 | + val ret = new java.util.ArrayList[T](size) |
| 153 | + var idx = 0 |
| 154 | + while (idx < size) { |
| 155 | + val row = rows(idx) |
| 156 | + val isNull = row(ordinal) == null |
| 157 | + if (isNull) { |
| 158 | + nulls.set(idx, true) |
| 159 | + ret.add(idx, defaultVal) |
| 160 | + } else { |
| 161 | + ret.add(idx, row(ordinal).asInstanceOf[T]) |
| 162 | + } |
| 163 | + idx += 1 |
| 164 | + } |
| 165 | + ret |
| 166 | + } |
| 167 | + |
| 168 | + private def toTColumnValue( |
| 169 | + ordinal: Int, |
| 170 | + row: List[Any], |
| 171 | + types: List[Column]): TColumnValue = { |
| 172 | + |
| 173 | + types(ordinal).getType match { |
| 174 | + case BOOLEAN => |
| 175 | + val boolValue = new TBoolValue |
| 176 | + if (row(ordinal) != null) boolValue.setValue(row(ordinal).asInstanceOf[Boolean]) |
| 177 | + TColumnValue.boolVal(boolValue) |
| 178 | + |
| 179 | + case TINYINT => |
| 180 | + val byteValue = new TByteValue |
| 181 | + if (row(ordinal) != null) byteValue.setValue(row(ordinal).asInstanceOf[Byte]) |
| 182 | + TColumnValue.byteVal(byteValue) |
| 183 | + |
| 184 | + case SMALLINT => |
| 185 | + val tI16Value = new TI16Value |
| 186 | + if (row(ordinal) != null) tI16Value.setValue(row(ordinal).asInstanceOf[Short]) |
| 187 | + TColumnValue.i16Val(tI16Value) |
| 188 | + |
| 189 | + case INTEGER => |
| 190 | + val tI32Value = new TI32Value |
| 191 | + if (row(ordinal) != null) tI32Value.setValue(row(ordinal).asInstanceOf[Int]) |
| 192 | + TColumnValue.i32Val(tI32Value) |
| 193 | + |
| 194 | + case BIGINT => |
| 195 | + val tI64Value = new TI64Value |
| 196 | + if (row(ordinal) != null) tI64Value.setValue(row(ordinal).asInstanceOf[Long]) |
| 197 | + TColumnValue.i64Val(tI64Value) |
| 198 | + |
| 199 | + case REAL => |
| 200 | + val tDoubleValue = new TDoubleValue |
| 201 | + if (row(ordinal) != null) tDoubleValue.setValue(row(ordinal).asInstanceOf[Float]) |
| 202 | + TColumnValue.doubleVal(tDoubleValue) |
| 203 | + |
| 204 | + case DOUBLE => |
| 205 | + val tDoubleValue = new TDoubleValue |
| 206 | + if (row(ordinal) != null) tDoubleValue.setValue(row(ordinal).asInstanceOf[Double]) |
| 207 | + TColumnValue.doubleVal(tDoubleValue) |
| 208 | + |
| 209 | + case VARCHAR => |
| 210 | + val tStringValue = new TStringValue |
| 211 | + if (row(ordinal) != null) tStringValue.setValue(row(ordinal).asInstanceOf[String]) |
| 212 | + TColumnValue.stringVal(tStringValue) |
| 213 | + |
| 214 | + case _ => |
| 215 | + val tStrValue = new TStringValue |
| 216 | + if (row(ordinal) != null) { |
| 217 | + tStrValue.setValue( |
| 218 | + toHiveString((row(ordinal), types(ordinal).getType))) |
| 219 | + } |
| 220 | + TColumnValue.stringVal(tStrValue) |
| 221 | + } |
| 222 | + } |
| 223 | + |
| 224 | + /** |
| 225 | + * A simpler impl of Trino's toHiveString |
| 226 | + */ |
| 227 | + def toHiveString(dataWithType: (Any, String)): String = { |
| 228 | + dataWithType match { |
| 229 | + case (null, _) => |
| 230 | + // Only match nulls in nested type values |
| 231 | + "null" |
| 232 | + |
| 233 | + case (bin: Array[Byte], VARBINARY) => |
| 234 | + new String(bin, StandardCharsets.UTF_8) |
| 235 | + |
| 236 | + case (s: String, VARCHAR) => |
| 237 | + // Only match string in nested type values |
| 238 | + "\"" + s + "\"" |
| 239 | + |
| 240 | + // for Array Map and Row, temporarily convert to string |
| 241 | + // TODO further analysis of type |
| 242 | + case (list: java.util.List[_], _) => |
| 243 | + formatValue(list) |
| 244 | + |
| 245 | + case (m: java.util.Map[_, _], _) => |
| 246 | + formatValue(m) |
| 247 | + |
| 248 | + case (row: Row, _) => |
| 249 | + formatValue(row) |
| 250 | + |
| 251 | + case (other, _) => |
| 252 | + other.toString |
| 253 | + } |
| 254 | + } |
| 255 | + |
| 256 | + def formatValue(o: Any): String = { |
| 257 | + o match { |
| 258 | + case null => |
| 259 | + "null" |
| 260 | + |
| 261 | + case m: java.util.Map[_, _] => |
| 262 | + m.asScala.map { case (key, value) => |
| 263 | + formatValue(key) + ":" + formatValue(value) |
| 264 | + }.toSeq.sorted.mkString("{", ",", "}") |
| 265 | + |
| 266 | + case l: java.util.List[_] => |
| 267 | + l.asScala.map(formatValue).mkString("[", ",", "]") |
| 268 | + |
| 269 | + case row: Row => |
| 270 | + row.getFields.asScala.map { r => |
| 271 | + val formattedValue = formatValue(r.getValue()) |
| 272 | + if (r.getName.isPresent) { |
| 273 | + r.getName.get() + "=" + formattedValue |
| 274 | + } else { |
| 275 | + formattedValue |
| 276 | + } |
| 277 | + }.mkString("{", ",", "}") |
| 278 | + |
| 279 | + case _ => o.toString |
| 280 | + } |
| 281 | + } |
| 282 | +} |
0 commit comments