Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add cnn model for malaria detection #1072

Merged
merged 1 commit into from
Jul 20, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
77 changes: 77 additions & 0 deletions examples/malaria_cnn/model/cnn.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@

from singa import layer
from singa import model


class CNN(model.Model):

def __init__(self, num_classes=10, num_channels=1):
super(CNN, self).__init__()
self.num_classes = num_classes
self.input_size = 128
self.dimension = 4
self.conv1 = layer.Conv2d(num_channels, 32, 3, padding=0, activation="RELU")
self.conv2 = layer.Conv2d(32, 64, 3, padding=0, activation="RELU")
self.conv3 = layer.Conv2d(64, 64, 3, padding=0, activation="RELU")
self.linear1 = layer.Linear(128)
self.linear2 = layer.Linear(num_classes)
self.pooling1 = layer.MaxPool2d(2, 2, padding=0)
self.pooling2 = layer.MaxPool2d(2, 2, padding=0)
self.pooling3 = layer.MaxPool2d(2, 2, padding=0)
self.relu = layer.ReLU()
self.flatten = layer.Flatten()
self.softmax_cross_entropy = layer.SoftMaxCrossEntropy()
self.sigmoid = layer

def forward(self, x):
y = self.conv1(x)
y = self.pooling1(y)
y = self.conv2(y)
y = self.pooling2(y)
y = self.conv3(y)
y = self.pooling3(y)
y = self.flatten(y)
y = self.linear1(y)
y = self.relu(y)
y = self.linear2(y)
return y

def train_one_batch(self, x, y, dist_option, spars):
out = self.forward(x)
loss = self.softmax_cross_entropy(out, y)

if dist_option == 'plain':
self.optimizer(loss)
elif dist_option == 'half':
self.optimizer.backward_and_update_half(loss)
elif dist_option == 'partialUpdate':
self.optimizer.backward_and_partial_update(loss)
elif dist_option == 'sparseTopK':
self.optimizer.backward_and_sparse_update(loss,
topK=True,
spars=spars)
elif dist_option == 'sparseThreshold':
self.optimizer.backward_and_sparse_update(loss,
topK=False,
spars=spars)
return out, loss

def set_optimizer(self, optimizer):
self.optimizer = optimizer


def create_model(**kwargs):
"""Constructs a CNN model.

Args:
pretrained (bool): If True, returns a pre-trained model.

Returns:
The created CNN model.
"""
model = CNN(**kwargs)

return model


__all__ = ['CNN', 'create_model']