Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[SPARK-22284][SQL] Fix 64KB JVM bytecode limit problem in calculating hash for nested structs #19563

Closed
wants to merge 5 commits into from

Conversation

kiszk
Copy link
Member

@kiszk kiszk commented Oct 24, 2017

What changes were proposed in this pull request?

This PR avoids to generate a huge method for calculating a murmur3 hash for nested structs. This PR splits a huge method (e.g. apply_4) into multiple smaller methods.

Sample program

  val structOfString = new StructType().add("str", StringType)
  var inner = new StructType()
  for (_ <- 0 until 800) {
    inner = inner1.add("structOfString", structOfString)
  }
  var schema = new StructType()
  for (_ <- 0 until 50) {
    schema = schema.add("structOfStructOfStrings", inner)
  }
  GenerateMutableProjection.generate(Seq(Murmur3Hash(exprs, 42)))

Without this PR

/* 005 */ class SpecificMutableProjection extends org.apache.spark.sql.catalyst.expressions.codegen.BaseMutableProjection {
/* 006 */
/* 007 */   private Object[] references;
/* 008 */   private InternalRow mutableRow;
/* 009 */   private int value;
/* 010 */   private int value_0;
...
/* 034 */   public java.lang.Object apply(java.lang.Object _i) {
/* 035 */     InternalRow i = (InternalRow) _i;
/* 036 */
/* 037 */
/* 038 */
/* 039 */     value = 42;
/* 040 */     apply_0(i);
/* 041 */     apply_1(i);
/* 042 */     apply_2(i);
/* 043 */     apply_3(i);
/* 044 */     apply_4(i);
/* 045 */     nestedClassInstance.apply_5(i);
...
/* 089 */     nestedClassInstance8.apply_49(i);
/* 090 */     value_0 = value;
/* 091 */
/* 092 */     // copy all the results into MutableRow
/* 093 */     mutableRow.setInt(0, value_0);
/* 094 */     return mutableRow;
/* 095 */   }
/* 096 */
/* 097 */
/* 098 */   private void apply_4(InternalRow i) {
/* 099 */
/* 100 */     boolean isNull5 = i.isNullAt(4);
/* 101 */     InternalRow value5 = isNull5 ? null : (i.getStruct(4, 800));
/* 102 */     if (!isNull5) {
/* 103 */
/* 104 */       if (!value5.isNullAt(0)) {
/* 105 */
/* 106 */         final InternalRow element6400 = value5.getStruct(0, 1);
/* 107 */
/* 108 */         if (!element6400.isNullAt(0)) {
/* 109 */
/* 110 */           final UTF8String element6401 = element6400.getUTF8String(0);
/* 111 */           value = org.apache.spark.unsafe.hash.Murmur3_x86_32.hashUnsafeBytes(element6401.getBaseObject(), element6401.getBaseOffset(), element6401.numBytes(), value);
/* 112 */
/* 113 */         }
/* 114 */
/* 115 */
/* 116 */       }
/* 117 */
/* 118 */
/* 119 */       if (!value5.isNullAt(1)) {
/* 120 */
/* 121 */         final InternalRow element6402 = value5.getStruct(1, 1);
/* 122 */
/* 123 */         if (!element6402.isNullAt(0)) {
/* 124 */
/* 125 */           final UTF8String element6403 = element6402.getUTF8String(0);
/* 126 */           value = org.apache.spark.unsafe.hash.Murmur3_x86_32.hashUnsafeBytes(element6403.getBaseObject(), element6403.getBaseOffset(), element6403.numBytes(), value);
/* 127 */
/* 128 */         }
/* 128 */         }
/* 129 */
/* 130 */
/* 131 */       }
/* 132 */
/* 133 */
/* 134 */       if (!value5.isNullAt(2)) {
/* 135 */
/* 136 */         final InternalRow element6404 = value5.getStruct(2, 1);
/* 137 */
/* 138 */         if (!element6404.isNullAt(0)) {
/* 139 */
/* 140 */           final UTF8String element6405 = element6404.getUTF8String(0);
/* 141 */           value = org.apache.spark.unsafe.hash.Murmur3_x86_32.hashUnsafeBytes(element6405.getBaseObject(), element6405.getBaseOffset(), element6405.numBytes(), value);
/* 142 */
/* 143 */         }
/* 144 */
/* 145 */
/* 146 */       }
/* 147 */
...
/* 12074 */       if (!value5.isNullAt(798)) {
/* 12075 */
/* 12076 */         final InternalRow element7996 = value5.getStruct(798, 1);
/* 12077 */
/* 12078 */         if (!element7996.isNullAt(0)) {
/* 12079 */
/* 12080 */           final UTF8String element7997 = element7996.getUTF8String(0);
/* 12083 */         }
/* 12084 */
/* 12085 */
/* 12086 */       }
/* 12087 */
/* 12088 */
/* 12089 */       if (!value5.isNullAt(799)) {
/* 12090 */
/* 12091 */         final InternalRow element7998 = value5.getStruct(799, 1);
/* 12092 */
/* 12093 */         if (!element7998.isNullAt(0)) {
/* 12094 */
/* 12095 */           final UTF8String element7999 = element7998.getUTF8String(0);
/* 12096 */           value = org.apache.spark.unsafe.hash.Murmur3_x86_32.hashUnsafeBytes(element7999.getBaseObject(), element7999.getBaseOffset(), element7999.numBytes(), value);
/* 12097 */
/* 12098 */         }
/* 12099 */
/* 12100 */
/* 12101 */       }
/* 12102 */
/* 12103 */     }
/* 12104 */
/* 12105 */   }
/* 12106 */
/* 12106 */
/* 12107 */
/* 12108 */   private void apply_1(InternalRow i) {
...

With this PR

/* 005 */ class SpecificMutableProjection extends org.apache.spark.sql.catalyst.expressions.codegen.BaseMutableProjection {
/* 006 */
/* 007 */   private Object[] references;
/* 008 */   private InternalRow mutableRow;
/* 009 */   private int value;
/* 010 */   private int value_0;
/* 011 */
...
/* 034 */   public java.lang.Object apply(java.lang.Object _i) {
/* 035 */     InternalRow i = (InternalRow) _i;
/* 036 */
/* 037 */
/* 038 */
/* 039 */     value = 42;
/* 040 */     nestedClassInstance11.apply50_0(i);
/* 041 */     nestedClassInstance11.apply50_1(i);
...
/* 088 */     nestedClassInstance11.apply50_48(i);
/* 089 */     nestedClassInstance11.apply50_49(i);
/* 090 */     value_0 = value;
/* 091 */
/* 092 */     // copy all the results into MutableRow
/* 093 */     mutableRow.setInt(0, value_0);
/* 094 */     return mutableRow;
/* 095 */   }
/* 096 */
...
/* 37717 */   private void apply4_0(InternalRow value5, InternalRow i) {
/* 37718 */
/* 37719 */     if (!value5.isNullAt(0)) {
/* 37720 */
/* 37721 */       final InternalRow element6400 = value5.getStruct(0, 1);
/* 37722 */
/* 37723 */       if (!element6400.isNullAt(0)) {
/* 37724 */
/* 37725 */         final UTF8String element6401 = element6400.getUTF8String(0);
/* 37726 */         value = org.apache.spark.unsafe.hash.Murmur3_x86_32.hashUnsafeBytes(element6401.getBaseObject(), element6401.getBaseOffset(), element6401.numBytes(), value);
/* 37727 */
/* 37728 */       }
/* 37729 */
/* 37730 */
/* 37731 */     }
/* 37732 */
/* 37733 */     if (!value5.isNullAt(1)) {
/* 37734 */
/* 37735 */       final InternalRow element6402 = value5.getStruct(1, 1);
/* 37736 */
/* 37737 */       if (!element6402.isNullAt(0)) {
/* 37738 */
/* 37739 */         final UTF8String element6403 = element6402.getUTF8String(0);
/* 37740 */         value = org.apache.spark.unsafe.hash.Murmur3_x86_32.hashUnsafeBytes(element6403.getBaseObject(), element6403.getBaseOffset(), element6403.numBytes(), value);
/* 37741 */
/* 37742 */       }
/* 37743 */
/* 37744 */
/* 37745 */     }
/* 37746 */
/* 37747 */     if (!value5.isNullAt(2)) {
/* 37748 */
/* 37749 */       final InternalRow element6404 = value5.getStruct(2, 1);
/* 37750 */
/* 37751 */       if (!element6404.isNullAt(0)) {
/* 37752 */
/* 37753 */         final UTF8String element6405 = element6404.getUTF8String(0);
/* 37754 */         value = org.apache.spark.unsafe.hash.Murmur3_x86_32.hashUnsafeBytes(element6405.getBaseObject(), element6405.getBaseOffset(), element6405.numBytes(), value);
/* 37755 */
/* 37756 */       }
/* 37757 */
/* 37758 */
/* 37759 */     }
/* 37760 */
/* 37761 */   }
...
/* 218470 */
/* 218471 */     private void apply50_4(InternalRow i) {
/* 218472 */
/* 218473 */       boolean isNull5 = i.isNullAt(4);
/* 218474 */       InternalRow value5 = isNull5 ? null : (i.getStruct(4, 800));
/* 218475 */       if (!isNull5) {
/* 218476 */         apply4_0(value5, i);
/* 218477 */         apply4_1(value5, i);
/* 218478 */         apply4_2(value5, i);
...
/* 218742 */         nestedClassInstance.apply4_266(value5, i);
/* 218743 */       }
/* 218744 */
/* 218745 */     }

How was this patch tested?

Added new test to HashExpressionsSuite

@kiszk kiszk changed the title Fix 64KB JVM bytecode limit problem in calculating hash for nested structs [SPARK-22284][SQL] Fix 64KB JVM bytecode limit problem in calculating hash for nested structs Oct 24, 2017
@SparkQA
Copy link

SparkQA commented Oct 24, 2017

Test build #83010 has finished for PR 19563 at commit bb9191f.

  • This patch fails Spark unit tests.
  • This patch merges cleanly.
  • This patch adds no public classes.

@SparkQA
Copy link

SparkQA commented Oct 24, 2017

Test build #83017 has finished for PR 19563 at commit 67d1e58.

  • This patch passes all tests.
  • This patch merges cleanly.
  • This patch adds no public classes.

@kiszk
Copy link
Member Author

kiszk commented Oct 25, 2017

@cloud-fan would it be possible to review this?

}.mkString("\n")
}
val args = if (ctx.INPUT_ROW != null) {
Seq(("InternalRow", input), ("InternalRow", ctx.INPUT_ROW))
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

sorry, I cannot understand why you need to pass ctx.INPUT_ROW as an argument, might you please explain me? Thanks.

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Good question. I conservatively pass ctx.INPUT_ROW. When I revisit this question, I believe that elements in struct would not use ctx.INPUT_ROW.

nullSafeElementHash(input, index.toString, field.nullable, field.dataType, result, ctx)
}.mkString("\n")
}
ctx.splitExpressions(hashes, "apply", ("InternalRow", input) :: Nil)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

then I think that here the best option would be ctx.splitExpressions(input, hashes) which contains additional safety checks and I think is easier.

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Good catch, done

@SparkQA
Copy link

SparkQA commented Oct 26, 2017

Test build #83082 has finished for PR 19563 at commit 63c3a07.

  • This patch passes all tests.
  • This patch merges cleanly.
  • This patch adds no public classes.

new GenericInternalRow(Array[Any](
UTF8String.fromString((j * L + i).toString))))
.toArray[Any])).toArray[Any])
var inner1 = new StructType()
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

what about avoiding the usage of var here and in the other places by passing a Seq of fields in the constructor?
The fields may be created using range generation and map instead of for loops.
I think in this way we would be more compliant to general functional Scala style, what do you think?

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I see, done

@SparkQA
Copy link

SparkQA commented Oct 29, 2017

Test build #83185 has finished for PR 19563 at commit 70c2304.

  • This patch passes all tests.
  • This patch merges cleanly.
  • This patch adds no public classes.

@mgaido91
Copy link
Contributor

thanks for addressing the comments @kiszk , now it LGTM

val murmursHashEval1 = Murmur3Hash(exprs1, seed).eval(wideRow1)
assert(murmur3HashPlan1(wideRow1).getInt(0) == murmursHashEval1)

val wideRow2 = new GenericInternalRow(Seq.tabulate(O)(k =>
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think this case totally covers the previous case, can we just keep this and remove wideRow1?

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Sure, done

@cloud-fan
Copy link
Contributor

LGTM

@SparkQA
Copy link

SparkQA commented Nov 10, 2017

Test build #83690 has finished for PR 19563 at commit 7947ca2.

  • This patch passes all tests.
  • This patch merges cleanly.
  • This patch adds no public classes.

@cloud-fan
Copy link
Contributor

thanks, merging to master/2.2!

asfgit pushed a commit that referenced this pull request Nov 10, 2017
… hash for nested structs

## What changes were proposed in this pull request?

This PR avoids to generate a huge method for calculating a murmur3 hash for nested structs. This PR splits a huge method (e.g. `apply_4`) into multiple smaller methods.

Sample program
```
  val structOfString = new StructType().add("str", StringType)
  var inner = new StructType()
  for (_ <- 0 until 800) {
    inner = inner1.add("structOfString", structOfString)
  }
  var schema = new StructType()
  for (_ <- 0 until 50) {
    schema = schema.add("structOfStructOfStrings", inner)
  }
  GenerateMutableProjection.generate(Seq(Murmur3Hash(exprs, 42)))
```

Without this PR
```
/* 005 */ class SpecificMutableProjection extends org.apache.spark.sql.catalyst.expressions.codegen.BaseMutableProjection {
/* 006 */
/* 007 */   private Object[] references;
/* 008 */   private InternalRow mutableRow;
/* 009 */   private int value;
/* 010 */   private int value_0;
...
/* 034 */   public java.lang.Object apply(java.lang.Object _i) {
/* 035 */     InternalRow i = (InternalRow) _i;
/* 036 */
/* 037 */
/* 038 */
/* 039 */     value = 42;
/* 040 */     apply_0(i);
/* 041 */     apply_1(i);
/* 042 */     apply_2(i);
/* 043 */     apply_3(i);
/* 044 */     apply_4(i);
/* 045 */     nestedClassInstance.apply_5(i);
...
/* 089 */     nestedClassInstance8.apply_49(i);
/* 090 */     value_0 = value;
/* 091 */
/* 092 */     // copy all the results into MutableRow
/* 093 */     mutableRow.setInt(0, value_0);
/* 094 */     return mutableRow;
/* 095 */   }
/* 096 */
/* 097 */
/* 098 */   private void apply_4(InternalRow i) {
/* 099 */
/* 100 */     boolean isNull5 = i.isNullAt(4);
/* 101 */     InternalRow value5 = isNull5 ? null : (i.getStruct(4, 800));
/* 102 */     if (!isNull5) {
/* 103 */
/* 104 */       if (!value5.isNullAt(0)) {
/* 105 */
/* 106 */         final InternalRow element6400 = value5.getStruct(0, 1);
/* 107 */
/* 108 */         if (!element6400.isNullAt(0)) {
/* 109 */
/* 110 */           final UTF8String element6401 = element6400.getUTF8String(0);
/* 111 */           value = org.apache.spark.unsafe.hash.Murmur3_x86_32.hashUnsafeBytes(element6401.getBaseObject(), element6401.getBaseOffset(), element6401.numBytes(), value);
/* 112 */
/* 113 */         }
/* 114 */
/* 115 */
/* 116 */       }
/* 117 */
/* 118 */
/* 119 */       if (!value5.isNullAt(1)) {
/* 120 */
/* 121 */         final InternalRow element6402 = value5.getStruct(1, 1);
/* 122 */
/* 123 */         if (!element6402.isNullAt(0)) {
/* 124 */
/* 125 */           final UTF8String element6403 = element6402.getUTF8String(0);
/* 126 */           value = org.apache.spark.unsafe.hash.Murmur3_x86_32.hashUnsafeBytes(element6403.getBaseObject(), element6403.getBaseOffset(), element6403.numBytes(), value);
/* 127 */
/* 128 */         }
/* 128 */         }
/* 129 */
/* 130 */
/* 131 */       }
/* 132 */
/* 133 */
/* 134 */       if (!value5.isNullAt(2)) {
/* 135 */
/* 136 */         final InternalRow element6404 = value5.getStruct(2, 1);
/* 137 */
/* 138 */         if (!element6404.isNullAt(0)) {
/* 139 */
/* 140 */           final UTF8String element6405 = element6404.getUTF8String(0);
/* 141 */           value = org.apache.spark.unsafe.hash.Murmur3_x86_32.hashUnsafeBytes(element6405.getBaseObject(), element6405.getBaseOffset(), element6405.numBytes(), value);
/* 142 */
/* 143 */         }
/* 144 */
/* 145 */
/* 146 */       }
/* 147 */
...
/* 12074 */       if (!value5.isNullAt(798)) {
/* 12075 */
/* 12076 */         final InternalRow element7996 = value5.getStruct(798, 1);
/* 12077 */
/* 12078 */         if (!element7996.isNullAt(0)) {
/* 12079 */
/* 12080 */           final UTF8String element7997 = element7996.getUTF8String(0);
/* 12083 */         }
/* 12084 */
/* 12085 */
/* 12086 */       }
/* 12087 */
/* 12088 */
/* 12089 */       if (!value5.isNullAt(799)) {
/* 12090 */
/* 12091 */         final InternalRow element7998 = value5.getStruct(799, 1);
/* 12092 */
/* 12093 */         if (!element7998.isNullAt(0)) {
/* 12094 */
/* 12095 */           final UTF8String element7999 = element7998.getUTF8String(0);
/* 12096 */           value = org.apache.spark.unsafe.hash.Murmur3_x86_32.hashUnsafeBytes(element7999.getBaseObject(), element7999.getBaseOffset(), element7999.numBytes(), value);
/* 12097 */
/* 12098 */         }
/* 12099 */
/* 12100 */
/* 12101 */       }
/* 12102 */
/* 12103 */     }
/* 12104 */
/* 12105 */   }
/* 12106 */
/* 12106 */
/* 12107 */
/* 12108 */   private void apply_1(InternalRow i) {
...
```

With this PR
```
/* 005 */ class SpecificMutableProjection extends org.apache.spark.sql.catalyst.expressions.codegen.BaseMutableProjection {
/* 006 */
/* 007 */   private Object[] references;
/* 008 */   private InternalRow mutableRow;
/* 009 */   private int value;
/* 010 */   private int value_0;
/* 011 */
...
/* 034 */   public java.lang.Object apply(java.lang.Object _i) {
/* 035 */     InternalRow i = (InternalRow) _i;
/* 036 */
/* 037 */
/* 038 */
/* 039 */     value = 42;
/* 040 */     nestedClassInstance11.apply50_0(i);
/* 041 */     nestedClassInstance11.apply50_1(i);
...
/* 088 */     nestedClassInstance11.apply50_48(i);
/* 089 */     nestedClassInstance11.apply50_49(i);
/* 090 */     value_0 = value;
/* 091 */
/* 092 */     // copy all the results into MutableRow
/* 093 */     mutableRow.setInt(0, value_0);
/* 094 */     return mutableRow;
/* 095 */   }
/* 096 */
...
/* 37717 */   private void apply4_0(InternalRow value5, InternalRow i) {
/* 37718 */
/* 37719 */     if (!value5.isNullAt(0)) {
/* 37720 */
/* 37721 */       final InternalRow element6400 = value5.getStruct(0, 1);
/* 37722 */
/* 37723 */       if (!element6400.isNullAt(0)) {
/* 37724 */
/* 37725 */         final UTF8String element6401 = element6400.getUTF8String(0);
/* 37726 */         value = org.apache.spark.unsafe.hash.Murmur3_x86_32.hashUnsafeBytes(element6401.getBaseObject(), element6401.getBaseOffset(), element6401.numBytes(), value);
/* 37727 */
/* 37728 */       }
/* 37729 */
/* 37730 */
/* 37731 */     }
/* 37732 */
/* 37733 */     if (!value5.isNullAt(1)) {
/* 37734 */
/* 37735 */       final InternalRow element6402 = value5.getStruct(1, 1);
/* 37736 */
/* 37737 */       if (!element6402.isNullAt(0)) {
/* 37738 */
/* 37739 */         final UTF8String element6403 = element6402.getUTF8String(0);
/* 37740 */         value = org.apache.spark.unsafe.hash.Murmur3_x86_32.hashUnsafeBytes(element6403.getBaseObject(), element6403.getBaseOffset(), element6403.numBytes(), value);
/* 37741 */
/* 37742 */       }
/* 37743 */
/* 37744 */
/* 37745 */     }
/* 37746 */
/* 37747 */     if (!value5.isNullAt(2)) {
/* 37748 */
/* 37749 */       final InternalRow element6404 = value5.getStruct(2, 1);
/* 37750 */
/* 37751 */       if (!element6404.isNullAt(0)) {
/* 37752 */
/* 37753 */         final UTF8String element6405 = element6404.getUTF8String(0);
/* 37754 */         value = org.apache.spark.unsafe.hash.Murmur3_x86_32.hashUnsafeBytes(element6405.getBaseObject(), element6405.getBaseOffset(), element6405.numBytes(), value);
/* 37755 */
/* 37756 */       }
/* 37757 */
/* 37758 */
/* 37759 */     }
/* 37760 */
/* 37761 */   }
...
/* 218470 */
/* 218471 */     private void apply50_4(InternalRow i) {
/* 218472 */
/* 218473 */       boolean isNull5 = i.isNullAt(4);
/* 218474 */       InternalRow value5 = isNull5 ? null : (i.getStruct(4, 800));
/* 218475 */       if (!isNull5) {
/* 218476 */         apply4_0(value5, i);
/* 218477 */         apply4_1(value5, i);
/* 218478 */         apply4_2(value5, i);
...
/* 218742 */         nestedClassInstance.apply4_266(value5, i);
/* 218743 */       }
/* 218744 */
/* 218745 */     }
```

## How was this patch tested?

Added new test to `HashExpressionsSuite`

Author: Kazuaki Ishizaki <ishizaki@jp.ibm.com>

Closes #19563 from kiszk/SPARK-22284.

(cherry picked from commit f2da738)
Signed-off-by: Wenchen Fan <wenchen@databricks.com>
@asfgit asfgit closed this in f2da738 Nov 10, 2017
MatthewRBruce pushed a commit to Shopify/spark that referenced this pull request Jul 31, 2018
… hash for nested structs

## What changes were proposed in this pull request?

This PR avoids to generate a huge method for calculating a murmur3 hash for nested structs. This PR splits a huge method (e.g. `apply_4`) into multiple smaller methods.

Sample program
```
  val structOfString = new StructType().add("str", StringType)
  var inner = new StructType()
  for (_ <- 0 until 800) {
    inner = inner1.add("structOfString", structOfString)
  }
  var schema = new StructType()
  for (_ <- 0 until 50) {
    schema = schema.add("structOfStructOfStrings", inner)
  }
  GenerateMutableProjection.generate(Seq(Murmur3Hash(exprs, 42)))
```

Without this PR
```
/* 005 */ class SpecificMutableProjection extends org.apache.spark.sql.catalyst.expressions.codegen.BaseMutableProjection {
/* 006 */
/* 007 */   private Object[] references;
/* 008 */   private InternalRow mutableRow;
/* 009 */   private int value;
/* 010 */   private int value_0;
...
/* 034 */   public java.lang.Object apply(java.lang.Object _i) {
/* 035 */     InternalRow i = (InternalRow) _i;
/* 036 */
/* 037 */
/* 038 */
/* 039 */     value = 42;
/* 040 */     apply_0(i);
/* 041 */     apply_1(i);
/* 042 */     apply_2(i);
/* 043 */     apply_3(i);
/* 044 */     apply_4(i);
/* 045 */     nestedClassInstance.apply_5(i);
...
/* 089 */     nestedClassInstance8.apply_49(i);
/* 090 */     value_0 = value;
/* 091 */
/* 092 */     // copy all the results into MutableRow
/* 093 */     mutableRow.setInt(0, value_0);
/* 094 */     return mutableRow;
/* 095 */   }
/* 096 */
/* 097 */
/* 098 */   private void apply_4(InternalRow i) {
/* 099 */
/* 100 */     boolean isNull5 = i.isNullAt(4);
/* 101 */     InternalRow value5 = isNull5 ? null : (i.getStruct(4, 800));
/* 102 */     if (!isNull5) {
/* 103 */
/* 104 */       if (!value5.isNullAt(0)) {
/* 105 */
/* 106 */         final InternalRow element6400 = value5.getStruct(0, 1);
/* 107 */
/* 108 */         if (!element6400.isNullAt(0)) {
/* 109 */
/* 110 */           final UTF8String element6401 = element6400.getUTF8String(0);
/* 111 */           value = org.apache.spark.unsafe.hash.Murmur3_x86_32.hashUnsafeBytes(element6401.getBaseObject(), element6401.getBaseOffset(), element6401.numBytes(), value);
/* 112 */
/* 113 */         }
/* 114 */
/* 115 */
/* 116 */       }
/* 117 */
/* 118 */
/* 119 */       if (!value5.isNullAt(1)) {
/* 120 */
/* 121 */         final InternalRow element6402 = value5.getStruct(1, 1);
/* 122 */
/* 123 */         if (!element6402.isNullAt(0)) {
/* 124 */
/* 125 */           final UTF8String element6403 = element6402.getUTF8String(0);
/* 126 */           value = org.apache.spark.unsafe.hash.Murmur3_x86_32.hashUnsafeBytes(element6403.getBaseObject(), element6403.getBaseOffset(), element6403.numBytes(), value);
/* 127 */
/* 128 */         }
/* 128 */         }
/* 129 */
/* 130 */
/* 131 */       }
/* 132 */
/* 133 */
/* 134 */       if (!value5.isNullAt(2)) {
/* 135 */
/* 136 */         final InternalRow element6404 = value5.getStruct(2, 1);
/* 137 */
/* 138 */         if (!element6404.isNullAt(0)) {
/* 139 */
/* 140 */           final UTF8String element6405 = element6404.getUTF8String(0);
/* 141 */           value = org.apache.spark.unsafe.hash.Murmur3_x86_32.hashUnsafeBytes(element6405.getBaseObject(), element6405.getBaseOffset(), element6405.numBytes(), value);
/* 142 */
/* 143 */         }
/* 144 */
/* 145 */
/* 146 */       }
/* 147 */
...
/* 12074 */       if (!value5.isNullAt(798)) {
/* 12075 */
/* 12076 */         final InternalRow element7996 = value5.getStruct(798, 1);
/* 12077 */
/* 12078 */         if (!element7996.isNullAt(0)) {
/* 12079 */
/* 12080 */           final UTF8String element7997 = element7996.getUTF8String(0);
/* 12083 */         }
/* 12084 */
/* 12085 */
/* 12086 */       }
/* 12087 */
/* 12088 */
/* 12089 */       if (!value5.isNullAt(799)) {
/* 12090 */
/* 12091 */         final InternalRow element7998 = value5.getStruct(799, 1);
/* 12092 */
/* 12093 */         if (!element7998.isNullAt(0)) {
/* 12094 */
/* 12095 */           final UTF8String element7999 = element7998.getUTF8String(0);
/* 12096 */           value = org.apache.spark.unsafe.hash.Murmur3_x86_32.hashUnsafeBytes(element7999.getBaseObject(), element7999.getBaseOffset(), element7999.numBytes(), value);
/* 12097 */
/* 12098 */         }
/* 12099 */
/* 12100 */
/* 12101 */       }
/* 12102 */
/* 12103 */     }
/* 12104 */
/* 12105 */   }
/* 12106 */
/* 12106 */
/* 12107 */
/* 12108 */   private void apply_1(InternalRow i) {
...
```

With this PR
```
/* 005 */ class SpecificMutableProjection extends org.apache.spark.sql.catalyst.expressions.codegen.BaseMutableProjection {
/* 006 */
/* 007 */   private Object[] references;
/* 008 */   private InternalRow mutableRow;
/* 009 */   private int value;
/* 010 */   private int value_0;
/* 011 */
...
/* 034 */   public java.lang.Object apply(java.lang.Object _i) {
/* 035 */     InternalRow i = (InternalRow) _i;
/* 036 */
/* 037 */
/* 038 */
/* 039 */     value = 42;
/* 040 */     nestedClassInstance11.apply50_0(i);
/* 041 */     nestedClassInstance11.apply50_1(i);
...
/* 088 */     nestedClassInstance11.apply50_48(i);
/* 089 */     nestedClassInstance11.apply50_49(i);
/* 090 */     value_0 = value;
/* 091 */
/* 092 */     // copy all the results into MutableRow
/* 093 */     mutableRow.setInt(0, value_0);
/* 094 */     return mutableRow;
/* 095 */   }
/* 096 */
...
/* 37717 */   private void apply4_0(InternalRow value5, InternalRow i) {
/* 37718 */
/* 37719 */     if (!value5.isNullAt(0)) {
/* 37720 */
/* 37721 */       final InternalRow element6400 = value5.getStruct(0, 1);
/* 37722 */
/* 37723 */       if (!element6400.isNullAt(0)) {
/* 37724 */
/* 37725 */         final UTF8String element6401 = element6400.getUTF8String(0);
/* 37726 */         value = org.apache.spark.unsafe.hash.Murmur3_x86_32.hashUnsafeBytes(element6401.getBaseObject(), element6401.getBaseOffset(), element6401.numBytes(), value);
/* 37727 */
/* 37728 */       }
/* 37729 */
/* 37730 */
/* 37731 */     }
/* 37732 */
/* 37733 */     if (!value5.isNullAt(1)) {
/* 37734 */
/* 37735 */       final InternalRow element6402 = value5.getStruct(1, 1);
/* 37736 */
/* 37737 */       if (!element6402.isNullAt(0)) {
/* 37738 */
/* 37739 */         final UTF8String element6403 = element6402.getUTF8String(0);
/* 37740 */         value = org.apache.spark.unsafe.hash.Murmur3_x86_32.hashUnsafeBytes(element6403.getBaseObject(), element6403.getBaseOffset(), element6403.numBytes(), value);
/* 37741 */
/* 37742 */       }
/* 37743 */
/* 37744 */
/* 37745 */     }
/* 37746 */
/* 37747 */     if (!value5.isNullAt(2)) {
/* 37748 */
/* 37749 */       final InternalRow element6404 = value5.getStruct(2, 1);
/* 37750 */
/* 37751 */       if (!element6404.isNullAt(0)) {
/* 37752 */
/* 37753 */         final UTF8String element6405 = element6404.getUTF8String(0);
/* 37754 */         value = org.apache.spark.unsafe.hash.Murmur3_x86_32.hashUnsafeBytes(element6405.getBaseObject(), element6405.getBaseOffset(), element6405.numBytes(), value);
/* 37755 */
/* 37756 */       }
/* 37757 */
/* 37758 */
/* 37759 */     }
/* 37760 */
/* 37761 */   }
...
/* 218470 */
/* 218471 */     private void apply50_4(InternalRow i) {
/* 218472 */
/* 218473 */       boolean isNull5 = i.isNullAt(4);
/* 218474 */       InternalRow value5 = isNull5 ? null : (i.getStruct(4, 800));
/* 218475 */       if (!isNull5) {
/* 218476 */         apply4_0(value5, i);
/* 218477 */         apply4_1(value5, i);
/* 218478 */         apply4_2(value5, i);
...
/* 218742 */         nestedClassInstance.apply4_266(value5, i);
/* 218743 */       }
/* 218744 */
/* 218745 */     }
```

## How was this patch tested?

Added new test to `HashExpressionsSuite`

Author: Kazuaki Ishizaki <ishizaki@jp.ibm.com>

Closes apache#19563 from kiszk/SPARK-22284.

(cherry picked from commit f2da738)
Signed-off-by: Wenchen Fan <wenchen@databricks.com>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

4 participants