-
Notifications
You must be signed in to change notification settings - Fork 28.3k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[SPARK-22983] Don't push filters beneath aggregates with empty grouping expressions #20180
Closed
JoshRosen
wants to merge
1
commit into
apache:master
from
JoshRosen:SPARK-22983-dont-push-filters-beneath-aggs-with-empty-grouping-expressions
Closed
Conversation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
gatorsmile
reviewed
Jan 8, 2018
SELECT 1 AS z, | ||
MIN(a.x) | ||
FROM (select 1 as x) a | ||
WHERE false |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Many RDBMS do not accept false
as a predicate. The typical way is 1 != 1
LGTM |
Test build #85774 has finished for PR 20180 at commit
|
retest this please |
Test build #85783 has finished for PR 20180 at commit
|
asfgit
pushed a commit
that referenced
this pull request
Jan 8, 2018
…ng expressions ## What changes were proposed in this pull request? The following SQL query should return zero rows, but in Spark it actually returns one row: ``` SELECT 1 from ( SELECT 1 AS z, MIN(a.x) FROM (select 1 as x) a WHERE false ) b where b.z != b.z ``` The problem stems from the `PushDownPredicate` rule: when this rule encounters a filter on top of an Aggregate operator, e.g. `Filter(Agg(...))`, it removes the original filter and adds a new filter onto Aggregate's child, e.g. `Agg(Filter(...))`. This is sometimes okay, but the case above is a counterexample: because there is no explicit `GROUP BY`, we are implicitly computing a global aggregate over the entire table so the original filter was not acting like a `HAVING` clause filtering the number of groups: if we push this filter then it fails to actually reduce the cardinality of the Aggregate output, leading to the wrong answer. In 2016 I fixed a similar problem involving invalid pushdowns of data-independent filters (filters which reference no columns of the filtered relation). There was additional discussion after my fix was merged which pointed out that my patch was an incomplete fix (see #15289), but it looks I must have either misunderstood the comment or forgot to follow up on the additional points raised there. This patch fixes the problem by choosing to never push down filters in cases where there are no grouping expressions. Since there are no grouping keys, the only columns are aggregate columns and we can't push filters defined over aggregate results, so this change won't cause us to miss out on any legitimate pushdown opportunities. ## How was this patch tested? New regression tests in `SQLQueryTestSuite` and `FilterPushdownSuite`. Author: Josh Rosen <joshrosen@databricks.com> Closes #20180 from JoshRosen/SPARK-22983-dont-push-filters-beneath-aggs-with-empty-grouping-expressions. (cherry picked from commit 2c73d2a) Signed-off-by: gatorsmile <gatorsmile@gmail.com>
Thanks! Merged to master/2.3/2.2 |
asfgit
pushed a commit
that referenced
this pull request
Jan 8, 2018
…ng expressions ## What changes were proposed in this pull request? The following SQL query should return zero rows, but in Spark it actually returns one row: ``` SELECT 1 from ( SELECT 1 AS z, MIN(a.x) FROM (select 1 as x) a WHERE false ) b where b.z != b.z ``` The problem stems from the `PushDownPredicate` rule: when this rule encounters a filter on top of an Aggregate operator, e.g. `Filter(Agg(...))`, it removes the original filter and adds a new filter onto Aggregate's child, e.g. `Agg(Filter(...))`. This is sometimes okay, but the case above is a counterexample: because there is no explicit `GROUP BY`, we are implicitly computing a global aggregate over the entire table so the original filter was not acting like a `HAVING` clause filtering the number of groups: if we push this filter then it fails to actually reduce the cardinality of the Aggregate output, leading to the wrong answer. In 2016 I fixed a similar problem involving invalid pushdowns of data-independent filters (filters which reference no columns of the filtered relation). There was additional discussion after my fix was merged which pointed out that my patch was an incomplete fix (see #15289), but it looks I must have either misunderstood the comment or forgot to follow up on the additional points raised there. This patch fixes the problem by choosing to never push down filters in cases where there are no grouping expressions. Since there are no grouping keys, the only columns are aggregate columns and we can't push filters defined over aggregate results, so this change won't cause us to miss out on any legitimate pushdown opportunities. ## How was this patch tested? New regression tests in `SQLQueryTestSuite` and `FilterPushdownSuite`. Author: Josh Rosen <joshrosen@databricks.com> Closes #20180 from JoshRosen/SPARK-22983-dont-push-filters-beneath-aggs-with-empty-grouping-expressions. (cherry picked from commit 2c73d2a) Signed-off-by: gatorsmile <gatorsmile@gmail.com>
JoshRosen
deleted the
SPARK-22983-dont-push-filters-beneath-aggs-with-empty-grouping-expressions
branch
January 8, 2018 18:37
MatthewRBruce
pushed a commit
to Shopify/spark
that referenced
this pull request
Jul 31, 2018
…ng expressions ## What changes were proposed in this pull request? The following SQL query should return zero rows, but in Spark it actually returns one row: ``` SELECT 1 from ( SELECT 1 AS z, MIN(a.x) FROM (select 1 as x) a WHERE false ) b where b.z != b.z ``` The problem stems from the `PushDownPredicate` rule: when this rule encounters a filter on top of an Aggregate operator, e.g. `Filter(Agg(...))`, it removes the original filter and adds a new filter onto Aggregate's child, e.g. `Agg(Filter(...))`. This is sometimes okay, but the case above is a counterexample: because there is no explicit `GROUP BY`, we are implicitly computing a global aggregate over the entire table so the original filter was not acting like a `HAVING` clause filtering the number of groups: if we push this filter then it fails to actually reduce the cardinality of the Aggregate output, leading to the wrong answer. In 2016 I fixed a similar problem involving invalid pushdowns of data-independent filters (filters which reference no columns of the filtered relation). There was additional discussion after my fix was merged which pointed out that my patch was an incomplete fix (see apache#15289), but it looks I must have either misunderstood the comment or forgot to follow up on the additional points raised there. This patch fixes the problem by choosing to never push down filters in cases where there are no grouping expressions. Since there are no grouping keys, the only columns are aggregate columns and we can't push filters defined over aggregate results, so this change won't cause us to miss out on any legitimate pushdown opportunities. ## How was this patch tested? New regression tests in `SQLQueryTestSuite` and `FilterPushdownSuite`. Author: Josh Rosen <joshrosen@databricks.com> Closes apache#20180 from JoshRosen/SPARK-22983-dont-push-filters-beneath-aggs-with-empty-grouping-expressions. (cherry picked from commit 2c73d2a) Signed-off-by: gatorsmile <gatorsmile@gmail.com>
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
What changes were proposed in this pull request?
The following SQL query should return zero rows, but in Spark it actually returns one row:
The problem stems from the
PushDownPredicate
rule: when this rule encounters a filter on top of an Aggregate operator, e.g.Filter(Agg(...))
, it removes the original filter and adds a new filter onto Aggregate's child, e.g.Agg(Filter(...))
. This is sometimes okay, but the case above is a counterexample: because there is no explicitGROUP BY
, we are implicitly computing a global aggregate over the entire table so the original filter was not acting like aHAVING
clause filtering the number of groups: if we push this filter then it fails to actually reduce the cardinality of the Aggregate output, leading to the wrong answer.In 2016 I fixed a similar problem involving invalid pushdowns of data-independent filters (filters which reference no columns of the filtered relation). There was additional discussion after my fix was merged which pointed out that my patch was an incomplete fix (see #15289), but it looks I must have either misunderstood the comment or forgot to follow up on the additional points raised there.
This patch fixes the problem by choosing to never push down filters in cases where there are no grouping expressions. Since there are no grouping keys, the only columns are aggregate columns and we can't push filters defined over aggregate results, so this change won't cause us to miss out on any legitimate pushdown opportunities.
How was this patch tested?
New regression tests in
SQLQueryTestSuite
andFilterPushdownSuite
.