Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[SPARK-31918][R] Ignore S4 generic methods under SparkR namespace in closure cleaning to support R 4.0.0+ #28907

Closed
wants to merge 4 commits into from

Conversation

HyukjinKwon
Copy link
Member

@HyukjinKwon HyukjinKwon commented Jun 23, 2020

What changes were proposed in this pull request?

This PR proposes to ignore S4 generic methods under SparkR namespace in closure cleaning to support R 4.0.0+.

Currently, when you run the codes that runs R native codes, it fails as below with R 4.0.0:

df <- createDataFrame(lapply(seq(100), function (e) list(value=e)))
count(dapply(df, function(x) as.data.frame(x[x$value < 50,]), schema(df)))
org.apache.spark.SparkException: R unexpectedly exited.
R worker produced errors: Error in lapply(part, FUN) : attempt to bind a variable to R_UnboundValue

The root cause seems to be related to when an S4 generic method is manually included into the closure's environment via SparkR:::processClosure. For example, when an RRDD is created via createDataFrame with calling lapply to convert, lapply itself:

setMethod("lapply",

is added into the environment of the cleaned closure - because this is not an exposed namespace; however, this is broken in R 4.0.0+ for an unknown reason with an error message such as "attempt to bind a variable to R_UnboundValue".

Actually, we don't need to add the lapply into the environment of the closure because it is not supposed to be called on the worker side. In fact, there is no private generic methods supposed to be called on the worker side in SparkR at all from my understanding.

Therefore, this PR takes a simpler path to work around just by explicitly excluding the S4 generic methods under SparkR namespace to support R 4.0.0. in SparkR.

Why are the changes needed?

To support R 4.0.0+ with SparkR, and unblock the releases on CRAN. CRAN requires the tests pass with the latest R.

Does this PR introduce any user-facing change?

Yes, it will support R 4.0.0 to end-users.

How was this patch tested?

Manually tested. Both CRAN and tests with R 4.0.1:

══ testthat results  ═══════════════════════════════════════════════════════════
[ OK: 13 | SKIPPED: 0 | WARNINGS: 0 | FAILED: 0 ]
✔ |  OK F W S | Context
✔ |  11       | binary functions [2.5 s]
✔ |   4       | functions on binary files [2.1 s]
✔ |   2       | broadcast variables [0.5 s]
✔ |   5       | functions in client.R
✔ |  46       | test functions in sparkR.R [6.3 s]
✔ |   2       | include R packages [0.3 s]
✔ |   2       | JVM API [0.2 s]
✔ |  75       | MLlib classification algorithms, except for tree-based algorithms [86.3 s]
✔ |  70       | MLlib clustering algorithms [44.5 s]
✔ |   6       | MLlib frequent pattern mining [3.0 s]
✔ |   8       | MLlib recommendation algorithms [9.6 s]
✔ | 136       | MLlib regression algorithms, except for tree-based algorithms [76.0 s]
✔ |   8       | MLlib statistics algorithms [0.6 s]
✔ |  94       | MLlib tree-based algorithms [85.2 s]
✔ |  29       | parallelize() and collect() [0.5 s]
✔ | 428       | basic RDD functions [25.3 s]
✔ |  39       | SerDe functionality [2.2 s]
✔ |  20       | partitionBy, groupByKey, reduceByKey etc. [3.9 s]
✔ |   4       | functions in sparkR.R
✔ |  16       | SparkSQL Arrow optimization [19.2 s]
✔ |   6       | test show SparkDataFrame when eager execution is enabled. [1.1 s]
✔ | 1175       | SparkSQL functions [134.8 s]
✔ |  42       | Structured Streaming [478.2 s]
✔ |  16       | tests RDD function take() [1.1 s]
✔ |  14       | the textFile() function [2.9 s]
✔ |  46       | functions in utils.R [0.7 s]
✔ |   0     1 | Windows-specific tests
────────────────────────────────────────────────────────────────────────────────
test_Windows.R:22: skip: sparkJars tag in SparkContext
Reason: This test is only for Windows, skipped
────────────────────────────────────────────────────────────────────────────────

══ Results ═════════════════════════════════════════════════════════════════════
Duration: 987.3 s

OK:       2304
Failed:   0
Warnings: 0
Skipped:  1
...
Status: OK
+ popd
Tests passed.

Note that I tested to build SparkR in R 4.0.0, and run the tests with R 3.6.3. It all passed. See also the comment in the JIRA.

model <- spark.logit(training, Species ~ ., family = "multinomial",
lowerBoundsOnCoefficients = l,
lowerBoundsOnIntercepts = as.array(c(0.0, 0.0)))
model <- suppressWarnings(spark.logit(training, Species ~ ., family = "multinomial",
Copy link
Member Author

@HyukjinKwon HyukjinKwon Jun 23, 2020

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It suppresses:

test_mllib_classification.R:258: error: spark.logit
(converted from warning) the condition has length > 1 and only the first element will be used
Backtrace:
 1. SparkR::spark.logit(...) tests/fulltests/test_mllib_classification.R:258:2
 2. SparkR::spark.logit(...)

@@ -130,7 +130,7 @@ test_that("spark.logit", {
summary <- summary(model)

# test summary coefficients return matrix type
expect_true(class(summary$coefficients) == "matrix")
expect_true(any(class(summary$coefficients) == "matrix"))
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

matrix objects now also inherit from class "array", so e.g., class(diag(1)) is c("matrix", "array"). This invalidates code incorrectly assuming that class(matrix_obj)) has length one.

https://cran.r-project.org/doc/manuals/r-devel/NEWS.html

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks! This also reminds me that it'll be great to test on r-devel (which I guess is 4.0.3 right now)

!(nodeChar %in% getNamespaceExports("SparkR")) &&
# Note that generic S4 methods should not be set to the environment of
# cleaned closure. It does not work with R 4.0.0+. See also SPARK-31918.
nodeChar != "" && !methods::isGeneric(nodeChar, func.env))) {
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

nodeChar can be empty strings, and isGeneric rejects empty strings.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Just to confirm this will only exclude generics inside SparkR -- is that right?

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yes .. so it wouldn't affect and/or protect other cases.

@HyukjinKwon
Copy link
Member Author

cc @shivaram, @felixcheung, @dongjoon-hyun.

@SparkQA
Copy link

SparkQA commented Jun 23, 2020

Test build #124417 has finished for PR 28907 at commit fe0deac.

  • This patch passes all tests.
  • This patch merges cleanly.
  • This patch adds no public classes.

Copy link
Contributor

@shivaram shivaram left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Just some minor comments. The only major concern I have is that we are not sure why this broke (as in what was the underlying change to R) -- so I'm not certain if other issues won't creep up later. But its still good to get this fix in for 3.0.1

!(nodeChar %in% getNamespaceExports("SparkR")) &&
# Note that generic S4 methods should not be set to the environment of
# cleaned closure. It does not work with R 4.0.0+. See also SPARK-31918.
nodeChar != "" && !methods::isGeneric(nodeChar, func.env))) {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Just to confirm this will only exclude generics inside SparkR -- is that right?

R/pkg/tests/fulltests/test_context.R Outdated Show resolved Hide resolved
@@ -130,7 +130,7 @@ test_that("spark.logit", {
summary <- summary(model)

# test summary coefficients return matrix type
expect_true(class(summary$coefficients) == "matrix")
expect_true(any(class(summary$coefficients) == "matrix"))
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks! This also reminds me that it'll be great to test on r-devel (which I guess is 4.0.3 right now)

@dongjoon-hyun
Copy link
Member

Thank you for pinging me, @HyukjinKwon .

@SparkQA

This comment has been minimized.

@SparkQA
Copy link

SparkQA commented Jun 24, 2020

Test build #124442 has finished for PR 28907 at commit 29bfcdb.

  • This patch passes all tests.
  • This patch merges cleanly.
  • This patch adds no public classes.

@SparkQA
Copy link

SparkQA commented Jun 24, 2020

Test build #124443 has finished for PR 28907 at commit 14886cb.

  • This patch passes all tests.
  • This patch merges cleanly.
  • This patch adds no public classes.

@HyukjinKwon
Copy link
Member Author

HyukjinKwon commented Jun 24, 2020

Merged to master, branch-3.0 and branch-2.4.

HyukjinKwon added a commit that referenced this pull request Jun 24, 2020
…closure cleaning to support R 4.0.0+

### What changes were proposed in this pull request?

This PR proposes to ignore S4 generic methods under SparkR namespace in closure cleaning to support R 4.0.0+.

Currently, when you run the codes that runs R native codes, it fails as below with R 4.0.0:

```r
df <- createDataFrame(lapply(seq(100), function (e) list(value=e)))
count(dapply(df, function(x) as.data.frame(x[x$value < 50,]), schema(df)))
```

```
org.apache.spark.SparkException: R unexpectedly exited.
R worker produced errors: Error in lapply(part, FUN) : attempt to bind a variable to R_UnboundValue
```

The root cause seems to be related to when an S4 generic method is manually included into the closure's environment via `SparkR:::cleanClosure`. For example, when an RRDD is created via `createDataFrame` with calling `lapply` to convert, `lapply` itself:

https://github.com/apache/spark/blob/f53d8c63e80172295e2fbc805c0c391bdececcaa/R/pkg/R/RDD.R#L484

is added into the environment of the cleaned closure - because this is not an exposed namespace; however, this is broken in R 4.0.0+ for an unknown reason with an error message such as "attempt to bind a variable to R_UnboundValue".

Actually, we don't need to add the `lapply` into the environment of the closure because it is not supposed to be called in worker side. In fact, there is no private generic methods supposed to be called in worker side in SparkR at all from my understanding.

Therefore, this PR takes a simpler path to work around just by explicitly excluding the S4 generic methods under SparkR namespace to support R 4.0.0. in SparkR.

### Why are the changes needed?

To support R 4.0.0+ with SparkR, and unblock the releases on CRAN. CRAN requires the tests pass with the latest R.

### Does this PR introduce _any_ user-facing change?

Yes, it will support R 4.0.0 to end-users.

### How was this patch tested?

Manually tested. Both CRAN and tests with R 4.0.1:

```
══ testthat results  ═══════════════════════════════════════════════════════════
[ OK: 13 | SKIPPED: 0 | WARNINGS: 0 | FAILED: 0 ]
✔ |  OK F W S | Context
✔ |  11       | binary functions [2.5 s]
✔ |   4       | functions on binary files [2.1 s]
✔ |   2       | broadcast variables [0.5 s]
✔ |   5       | functions in client.R
✔ |  46       | test functions in sparkR.R [6.3 s]
✔ |   2       | include R packages [0.3 s]
✔ |   2       | JVM API [0.2 s]
✔ |  75       | MLlib classification algorithms, except for tree-based algorithms [86.3 s]
✔ |  70       | MLlib clustering algorithms [44.5 s]
✔ |   6       | MLlib frequent pattern mining [3.0 s]
✔ |   8       | MLlib recommendation algorithms [9.6 s]
✔ | 136       | MLlib regression algorithms, except for tree-based algorithms [76.0 s]
✔ |   8       | MLlib statistics algorithms [0.6 s]
✔ |  94       | MLlib tree-based algorithms [85.2 s]
✔ |  29       | parallelize() and collect() [0.5 s]
✔ | 428       | basic RDD functions [25.3 s]
✔ |  39       | SerDe functionality [2.2 s]
✔ |  20       | partitionBy, groupByKey, reduceByKey etc. [3.9 s]
✔ |   4       | functions in sparkR.R
✔ |  16       | SparkSQL Arrow optimization [19.2 s]
✔ |   6       | test show SparkDataFrame when eager execution is enabled. [1.1 s]
✔ | 1175       | SparkSQL functions [134.8 s]
✔ |  42       | Structured Streaming [478.2 s]
✔ |  16       | tests RDD function take() [1.1 s]
✔ |  14       | the textFile() function [2.9 s]
✔ |  46       | functions in utils.R [0.7 s]
✔ |   0     1 | Windows-specific tests
────────────────────────────────────────────────────────────────────────────────
test_Windows.R:22: skip: sparkJars tag in SparkContext
Reason: This test is only for Windows, skipped
────────────────────────────────────────────────────────────────────────────────

══ Results ═════════════════════════════════════════════════════════════════════
Duration: 987.3 s

OK:       2304
Failed:   0
Warnings: 0
Skipped:  1
...
Status: OK
+ popd
Tests passed.
```

Note that I tested to build SparkR in R 4.0.0, and run the tests with R 3.6.3. It all passed. See also [the comment in the JIRA](https://issues.apache.org/jira/browse/SPARK-31918?focusedCommentId=17142837&page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel#comment-17142837).

Closes #28907 from HyukjinKwon/SPARK-31918.

Authored-by: HyukjinKwon <gurwls223@apache.org>
Signed-off-by: HyukjinKwon <gurwls223@apache.org>
(cherry picked from commit 11d2b07)
Signed-off-by: HyukjinKwon <gurwls223@apache.org>
HyukjinKwon added a commit that referenced this pull request Jun 24, 2020
…closure cleaning to support R 4.0.0+

### What changes were proposed in this pull request?

This PR proposes to ignore S4 generic methods under SparkR namespace in closure cleaning to support R 4.0.0+.

Currently, when you run the codes that runs R native codes, it fails as below with R 4.0.0:

```r
df <- createDataFrame(lapply(seq(100), function (e) list(value=e)))
count(dapply(df, function(x) as.data.frame(x[x$value < 50,]), schema(df)))
```

```
org.apache.spark.SparkException: R unexpectedly exited.
R worker produced errors: Error in lapply(part, FUN) : attempt to bind a variable to R_UnboundValue
```

The root cause seems to be related to when an S4 generic method is manually included into the closure's environment via `SparkR:::cleanClosure`. For example, when an RRDD is created via `createDataFrame` with calling `lapply` to convert, `lapply` itself:

https://github.com/apache/spark/blob/f53d8c63e80172295e2fbc805c0c391bdececcaa/R/pkg/R/RDD.R#L484

is added into the environment of the cleaned closure - because this is not an exposed namespace; however, this is broken in R 4.0.0+ for an unknown reason with an error message such as "attempt to bind a variable to R_UnboundValue".

Actually, we don't need to add the `lapply` into the environment of the closure because it is not supposed to be called in worker side. In fact, there is no private generic methods supposed to be called in worker side in SparkR at all from my understanding.

Therefore, this PR takes a simpler path to work around just by explicitly excluding the S4 generic methods under SparkR namespace to support R 4.0.0. in SparkR.

### Why are the changes needed?

To support R 4.0.0+ with SparkR, and unblock the releases on CRAN. CRAN requires the tests pass with the latest R.

### Does this PR introduce _any_ user-facing change?

Yes, it will support R 4.0.0 to end-users.

### How was this patch tested?

Manually tested. Both CRAN and tests with R 4.0.1:

```
══ testthat results  ═══════════════════════════════════════════════════════════
[ OK: 13 | SKIPPED: 0 | WARNINGS: 0 | FAILED: 0 ]
✔ |  OK F W S | Context
✔ |  11       | binary functions [2.5 s]
✔ |   4       | functions on binary files [2.1 s]
✔ |   2       | broadcast variables [0.5 s]
✔ |   5       | functions in client.R
✔ |  46       | test functions in sparkR.R [6.3 s]
✔ |   2       | include R packages [0.3 s]
✔ |   2       | JVM API [0.2 s]
✔ |  75       | MLlib classification algorithms, except for tree-based algorithms [86.3 s]
✔ |  70       | MLlib clustering algorithms [44.5 s]
✔ |   6       | MLlib frequent pattern mining [3.0 s]
✔ |   8       | MLlib recommendation algorithms [9.6 s]
✔ | 136       | MLlib regression algorithms, except for tree-based algorithms [76.0 s]
✔ |   8       | MLlib statistics algorithms [0.6 s]
✔ |  94       | MLlib tree-based algorithms [85.2 s]
✔ |  29       | parallelize() and collect() [0.5 s]
✔ | 428       | basic RDD functions [25.3 s]
✔ |  39       | SerDe functionality [2.2 s]
✔ |  20       | partitionBy, groupByKey, reduceByKey etc. [3.9 s]
✔ |   4       | functions in sparkR.R
✔ |  16       | SparkSQL Arrow optimization [19.2 s]
✔ |   6       | test show SparkDataFrame when eager execution is enabled. [1.1 s]
✔ | 1175       | SparkSQL functions [134.8 s]
✔ |  42       | Structured Streaming [478.2 s]
✔ |  16       | tests RDD function take() [1.1 s]
✔ |  14       | the textFile() function [2.9 s]
✔ |  46       | functions in utils.R [0.7 s]
✔ |   0     1 | Windows-specific tests
────────────────────────────────────────────────────────────────────────────────
test_Windows.R:22: skip: sparkJars tag in SparkContext
Reason: This test is only for Windows, skipped
────────────────────────────────────────────────────────────────────────────────

══ Results ═════════════════════════════════════════════════════════════════════
Duration: 987.3 s

OK:       2304
Failed:   0
Warnings: 0
Skipped:  1
...
Status: OK
+ popd
Tests passed.
```

Note that I tested to build SparkR in R 4.0.0, and run the tests with R 3.6.3. It all passed. See also [the comment in the JIRA](https://issues.apache.org/jira/browse/SPARK-31918?focusedCommentId=17142837&page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel#comment-17142837).

Closes #28907 from HyukjinKwon/SPARK-31918.

Authored-by: HyukjinKwon <gurwls223@apache.org>
Signed-off-by: HyukjinKwon <gurwls223@apache.org>
(cherry picked from commit 11d2b07)
Signed-off-by: HyukjinKwon <gurwls223@apache.org>
@HyukjinKwon HyukjinKwon deleted the SPARK-31918 branch July 27, 2020 07:44
sumwale pushed a commit to TIBCOSoftware/snappy-spark that referenced this pull request Oct 15, 2021
…closure cleaning to support R 4.0.0+

This PR proposes to ignore S4 generic methods under SparkR namespace in closure cleaning to support R 4.0.0+.

Currently, when you run the codes that runs R native codes, it fails as below with R 4.0.0:

```r
df <- createDataFrame(lapply(seq(100), function (e) list(value=e)))
count(dapply(df, function(x) as.data.frame(x[x$value < 50,]), schema(df)))
```

```
org.apache.spark.SparkException: R unexpectedly exited.
R worker produced errors: Error in lapply(part, FUN) : attempt to bind a variable to R_UnboundValue
```

The root cause seems to be related to when an S4 generic method is manually included into the closure's environment via `SparkR:::cleanClosure`. For example, when an RRDD is created via `createDataFrame` with calling `lapply` to convert, `lapply` itself:

https://github.com/apache/spark/blob/f53d8c63e80172295e2fbc805c0c391bdececcaa/R/pkg/R/RDD.R#L484

is added into the environment of the cleaned closure - because this is not an exposed namespace; however, this is broken in R 4.0.0+ for an unknown reason with an error message such as "attempt to bind a variable to R_UnboundValue".

Actually, we don't need to add the `lapply` into the environment of the closure because it is not supposed to be called in worker side. In fact, there is no private generic methods supposed to be called in worker side in SparkR at all from my understanding.

Therefore, this PR takes a simpler path to work around just by explicitly excluding the S4 generic methods under SparkR namespace to support R 4.0.0. in SparkR.

To support R 4.0.0+ with SparkR, and unblock the releases on CRAN. CRAN requires the tests pass with the latest R.

Yes, it will support R 4.0.0 to end-users.

Manually tested. Both CRAN and tests with R 4.0.1:

```
══ testthat results  ═══════════════════════════════════════════════════════════
[ OK: 13 | SKIPPED: 0 | WARNINGS: 0 | FAILED: 0 ]
✔ |  OK F W S | Context
✔ |  11       | binary functions [2.5 s]
✔ |   4       | functions on binary files [2.1 s]
✔ |   2       | broadcast variables [0.5 s]
✔ |   5       | functions in client.R
✔ |  46       | test functions in sparkR.R [6.3 s]
✔ |   2       | include R packages [0.3 s]
✔ |   2       | JVM API [0.2 s]
✔ |  75       | MLlib classification algorithms, except for tree-based algorithms [86.3 s]
✔ |  70       | MLlib clustering algorithms [44.5 s]
✔ |   6       | MLlib frequent pattern mining [3.0 s]
✔ |   8       | MLlib recommendation algorithms [9.6 s]
✔ | 136       | MLlib regression algorithms, except for tree-based algorithms [76.0 s]
✔ |   8       | MLlib statistics algorithms [0.6 s]
✔ |  94       | MLlib tree-based algorithms [85.2 s]
✔ |  29       | parallelize() and collect() [0.5 s]
✔ | 428       | basic RDD functions [25.3 s]
✔ |  39       | SerDe functionality [2.2 s]
✔ |  20       | partitionBy, groupByKey, reduceByKey etc. [3.9 s]
✔ |   4       | functions in sparkR.R
✔ |  16       | SparkSQL Arrow optimization [19.2 s]
✔ |   6       | test show SparkDataFrame when eager execution is enabled. [1.1 s]
✔ | 1175       | SparkSQL functions [134.8 s]
✔ |  42       | Structured Streaming [478.2 s]
✔ |  16       | tests RDD function take() [1.1 s]
✔ |  14       | the textFile() function [2.9 s]
✔ |  46       | functions in utils.R [0.7 s]
✔ |   0     1 | Windows-specific tests
────────────────────────────────────────────────────────────────────────────────
test_Windows.R:22: skip: sparkJars tag in SparkContext
Reason: This test is only for Windows, skipped
────────────────────────────────────────────────────────────────────────────────

══ Results ═════════════════════════════════════════════════════════════════════
Duration: 987.3 s

OK:       2304
Failed:   0
Warnings: 0
Skipped:  1
...
Status: OK
+ popd
Tests passed.
```

Note that I tested to build SparkR in R 4.0.0, and run the tests with R 3.6.3. It all passed. See also [the comment in the JIRA](https://issues.apache.org/jira/browse/SPARK-31918?focusedCommentId=17142837&page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel#comment-17142837).

Closes apache#28907 from HyukjinKwon/SPARK-31918.

Authored-by: HyukjinKwon <gurwls223@apache.org>
Signed-off-by: HyukjinKwon <gurwls223@apache.org>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Projects
None yet
Development

Successfully merging this pull request may close these issues.

4 participants