Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

Already on GitHub? Sign in to your account

SPARK 1084.1 (resubmitted) #31

Closed
wants to merge 6 commits into
from

Conversation

Projects
None yet
3 participants

Merged build triggered.

Merged build started.

Merged build triggered.

Merged build finished.

All automated tests passed.
Refer to this link for build results: https://amplab.cs.berkeley.edu/jenkins/job/SparkPullRequestBuilder/12917/

Contributor

pwendell commented Feb 27, 2014

Looks good, merging this into master. Thanks!

@asfgit asfgit closed this in 12bbca2 Feb 27, 2014

@srowen srowen deleted the srowen:SPARK-1084.1 branch Mar 2, 2014

jhartlaub referenced this pull request in jhartlaub/spark May 27, 2014

Merge pull request #31 from sundeepn/branch-0.8
Resolving package conflicts with hadoop 0.23.9

Hadoop 0.23.9 is having a package conflict with easymock's dependencies.

CrazyJvm added a commit to CrazyJvm/spark that referenced this pull request Jun 1, 2014

SPARK 1084.1 (resubmitted)
(Ported from https://github.com/apache/incubator-spark/pull/637 )

Author: Sean Owen <sowen@cloudera.com>

Closes #31 from srowen/SPARK-1084.1 and squashes the following commits:

6c4a32c [Sean Owen] Suppress warnings about legitimate unchecked array creations, or change code to avoid it
f35b833 [Sean Owen] Fix two misc javadoc problems
254e8ef [Sean Owen] Fix one new style error introduced in scaladoc warning commit
5b2fce2 [Sean Owen] Fix scaladoc invocation warning, and enable javac warnings properly, with plugin config updates
007762b [Sean Owen] Remove dead scaladoc links
b8ff8cb [Sean Owen] Replace deprecated Ant <tasks> with <target>

gzm55 added a commit to MediaV/spark that referenced this pull request Jul 17, 2014

SPARK 1084.1 (resubmitted)
(Ported from https://github.com/apache/incubator-spark/pull/637 )

Author: Sean Owen <sowen@cloudera.com>

Closes #31 from srowen/SPARK-1084.1 and squashes the following commits:

6c4a32c [Sean Owen] Suppress warnings about legitimate unchecked array creations, or change code to avoid it
f35b833 [Sean Owen] Fix two misc javadoc problems
254e8ef [Sean Owen] Fix one new style error introduced in scaladoc warning commit
5b2fce2 [Sean Owen] Fix scaladoc invocation warning, and enable javac warnings properly, with plugin config updates
007762b [Sean Owen] Remove dead scaladoc links
b8ff8cb [Sean Owen] Replace deprecated Ant <tasks> with <target>

Conflicts:
	bagel/src/main/scala/org/apache/spark/bagel/Bagel.scala
	core/src/main/scala/org/apache/spark/util/StatCounter.scala
	streaming/src/main/scala/org/apache/spark/streaming/api/java/JavaPairDStream.scala
	streaming/src/main/scala/org/apache/spark/streaming/dstream/PairDStreamFunctions.scala

adrian-wang pushed a commit to adrian-wang/spark that referenced this pull request May 10, 2016

[Issue28] Integrate with SpinachMeta (#31)
* Integrate with SpinachMeta

* Use any for WriteResult

* Minor fix

asfgit pushed a commit that referenced this pull request Jun 15, 2016

[SPARK-15888] [SQL] fix Python UDF with aggregate
## What changes were proposed in this pull request?

After we move the ExtractPythonUDF rule into physical plan, Python UDF can't work on top of aggregate anymore, because they can't be evaluated before aggregate, should be evaluated after aggregate. This PR add another rule to extract these kind of Python UDF from logical aggregate, create a Project on top of Aggregate.

## How was this patch tested?

Added regression tests. The plan of added test query looks like this:
```
== Parsed Logical Plan ==
'Project [<lambda>('k, 's) AS t#26]
+- Aggregate [<lambda>(key#5L)], [<lambda>(key#5L) AS k#17, sum(cast(<lambda>(value#6) as bigint)) AS s#22L]
   +- LogicalRDD [key#5L, value#6]

== Analyzed Logical Plan ==
t: int
Project [<lambda>(k#17, s#22L) AS t#26]
+- Aggregate [<lambda>(key#5L)], [<lambda>(key#5L) AS k#17, sum(cast(<lambda>(value#6) as bigint)) AS s#22L]
   +- LogicalRDD [key#5L, value#6]

== Optimized Logical Plan ==
Project [<lambda>(agg#29, agg#30L) AS t#26]
+- Aggregate [<lambda>(key#5L)], [<lambda>(key#5L) AS agg#29, sum(cast(<lambda>(value#6) as bigint)) AS agg#30L]
   +- LogicalRDD [key#5L, value#6]

== Physical Plan ==
*Project [pythonUDF0#37 AS t#26]
+- BatchEvalPython [<lambda>(agg#29, agg#30L)], [agg#29, agg#30L, pythonUDF0#37]
   +- *HashAggregate(key=[<lambda>(key#5L)#31], functions=[sum(cast(<lambda>(value#6) as bigint))], output=[agg#29,agg#30L])
      +- Exchange hashpartitioning(<lambda>(key#5L)#31, 200)
         +- *HashAggregate(key=[pythonUDF0#34 AS <lambda>(key#5L)#31], functions=[partial_sum(cast(pythonUDF1#35 as bigint))], output=[<lambda>(key#5L)#31,sum#33L])
            +- BatchEvalPython [<lambda>(key#5L), <lambda>(value#6)], [key#5L, value#6, pythonUDF0#34, pythonUDF1#35]
               +- Scan ExistingRDD[key#5L,value#6]
```

Author: Davies Liu <davies@databricks.com>

Closes #13682 from davies/fix_py_udf.

(cherry picked from commit 5389013)
Signed-off-by: Davies Liu <davies.liu@gmail.com>

dbtsai-bot pushed a commit to dbtsai/spark that referenced this pull request Jun 15, 2016

[SPARK-15888] [SQL] fix Python UDF with aggregate
## What changes were proposed in this pull request?

After we move the ExtractPythonUDF rule into physical plan, Python UDF can't work on top of aggregate anymore, because they can't be evaluated before aggregate, should be evaluated after aggregate. This PR add another rule to extract these kind of Python UDF from logical aggregate, create a Project on top of Aggregate.

## How was this patch tested?

Added regression tests. The plan of added test query looks like this:
```
== Parsed Logical Plan ==
'Project [<lambda>('k, 's) AS t#26]
+- Aggregate [<lambda>(key#5L)], [<lambda>(key#5L) AS k#17, sum(cast(<lambda>(value#6) as bigint)) AS s#22L]
   +- LogicalRDD [key#5L, value#6]

== Analyzed Logical Plan ==
t: int
Project [<lambda>(k#17, s#22L) AS t#26]
+- Aggregate [<lambda>(key#5L)], [<lambda>(key#5L) AS k#17, sum(cast(<lambda>(value#6) as bigint)) AS s#22L]
   +- LogicalRDD [key#5L, value#6]

== Optimized Logical Plan ==
Project [<lambda>(agg#29, agg#30L) AS t#26]
+- Aggregate [<lambda>(key#5L)], [<lambda>(key#5L) AS agg#29, sum(cast(<lambda>(value#6) as bigint)) AS agg#30L]
   +- LogicalRDD [key#5L, value#6]

== Physical Plan ==
*Project [pythonUDF0#37 AS t#26]
+- BatchEvalPython [<lambda>(agg#29, agg#30L)], [agg#29, agg#30L, pythonUDF0#37]
   +- *HashAggregate(key=[<lambda>(key#5L)#31], functions=[sum(cast(<lambda>(value#6) as bigint))], output=[agg#29,agg#30L])
      +- Exchange hashpartitioning(<lambda>(key#5L)#31, 200)
         +- *HashAggregate(key=[pythonUDF0#34 AS <lambda>(key#5L)#31], functions=[partial_sum(cast(pythonUDF1#35 as bigint))], output=[<lambda>(key#5L)#31,sum#33L])
            +- BatchEvalPython [<lambda>(key#5L), <lambda>(value#6)], [key#5L, value#6, pythonUDF0#34, pythonUDF1#35]
               +- Scan ExistingRDD[key#5L,value#6]
```

Author: Davies Liu <davies@databricks.com>

Closes #13682 from davies/fix_py_udf.

alee-altiscale added a commit to Altiscale/spark that referenced this pull request Jun 20, 2016

[SPARK-15888] [SQL] fix Python UDF with aggregate
## What changes were proposed in this pull request?

After we move the ExtractPythonUDF rule into physical plan, Python UDF can't work on top of aggregate anymore, because they can't be evaluated before aggregate, should be evaluated after aggregate. This PR add another rule to extract these kind of Python UDF from logical aggregate, create a Project on top of Aggregate.

## How was this patch tested?

Added regression tests. The plan of added test query looks like this:
```
== Parsed Logical Plan ==
'Project [<lambda>('k, 's) AS t#26]
+- Aggregate [<lambda>(key#5L)], [<lambda>(key#5L) AS k#17, sum(cast(<lambda>(value#6) as bigint)) AS s#22L]
   +- LogicalRDD [key#5L, value#6]

== Analyzed Logical Plan ==
t: int
Project [<lambda>(k#17, s#22L) AS t#26]
+- Aggregate [<lambda>(key#5L)], [<lambda>(key#5L) AS k#17, sum(cast(<lambda>(value#6) as bigint)) AS s#22L]
   +- LogicalRDD [key#5L, value#6]

== Optimized Logical Plan ==
Project [<lambda>(agg#29, agg#30L) AS t#26]
+- Aggregate [<lambda>(key#5L)], [<lambda>(key#5L) AS agg#29, sum(cast(<lambda>(value#6) as bigint)) AS agg#30L]
   +- LogicalRDD [key#5L, value#6]

== Physical Plan ==
*Project [pythonUDF0#37 AS t#26]
+- BatchEvalPython [<lambda>(agg#29, agg#30L)], [agg#29, agg#30L, pythonUDF0#37]
   +- *HashAggregate(key=[<lambda>(key#5L)#31], functions=[sum(cast(<lambda>(value#6) as bigint))], output=[agg#29,agg#30L])
      +- Exchange hashpartitioning(<lambda>(key#5L)#31, 200)
         +- *HashAggregate(key=[pythonUDF0#34 AS <lambda>(key#5L)#31], functions=[partial_sum(cast(pythonUDF1#35 as bigint))], output=[<lambda>(key#5L)#31,sum#33L])
            +- BatchEvalPython [<lambda>(key#5L), <lambda>(value#6)], [key#5L, value#6, pythonUDF0#34, pythonUDF1#35]
               +- Scan ExistingRDD[key#5L,value#6]
```

Author: Davies Liu <davies@databricks.com>

Closes #13682 from davies/fix_py_udf.

(cherry picked from commit 5389013)
Signed-off-by: Davies Liu <davies.liu@gmail.com>

nchammas added a commit to nchammas/spark that referenced this pull request Jul 11, 2016

[SPARK-15888] [SQL] fix Python UDF with aggregate
## What changes were proposed in this pull request?

After we move the ExtractPythonUDF rule into physical plan, Python UDF can't work on top of aggregate anymore, because they can't be evaluated before aggregate, should be evaluated after aggregate. This PR add another rule to extract these kind of Python UDF from logical aggregate, create a Project on top of Aggregate.

## How was this patch tested?

Added regression tests. The plan of added test query looks like this:
```
== Parsed Logical Plan ==
'Project [<lambda>('k, 's) AS t#26]
+- Aggregate [<lambda>(key#5L)], [<lambda>(key#5L) AS k#17, sum(cast(<lambda>(value#6) as bigint)) AS s#22L]
   +- LogicalRDD [key#5L, value#6]

== Analyzed Logical Plan ==
t: int
Project [<lambda>(k#17, s#22L) AS t#26]
+- Aggregate [<lambda>(key#5L)], [<lambda>(key#5L) AS k#17, sum(cast(<lambda>(value#6) as bigint)) AS s#22L]
   +- LogicalRDD [key#5L, value#6]

== Optimized Logical Plan ==
Project [<lambda>(agg#29, agg#30L) AS t#26]
+- Aggregate [<lambda>(key#5L)], [<lambda>(key#5L) AS agg#29, sum(cast(<lambda>(value#6) as bigint)) AS agg#30L]
   +- LogicalRDD [key#5L, value#6]

== Physical Plan ==
*Project [pythonUDF0#37 AS t#26]
+- BatchEvalPython [<lambda>(agg#29, agg#30L)], [agg#29, agg#30L, pythonUDF0#37]
   +- *HashAggregate(key=[<lambda>(key#5L)#31], functions=[sum(cast(<lambda>(value#6) as bigint))], output=[agg#29,agg#30L])
      +- Exchange hashpartitioning(<lambda>(key#5L)#31, 200)
         +- *HashAggregate(key=[pythonUDF0#34 AS <lambda>(key#5L)#31], functions=[partial_sum(cast(pythonUDF1#35 as bigint))], output=[<lambda>(key#5L)#31,sum#33L])
            +- BatchEvalPython [<lambda>(key#5L), <lambda>(value#6)], [key#5L, value#6, pythonUDF0#34, pythonUDF1#35]
               +- Scan ExistingRDD[key#5L,value#6]
```

Author: Davies Liu <davies@databricks.com>

Closes #13682 from davies/fix_py_udf.

lins05 pushed a commit to lins05/spark that referenced this pull request Jan 22, 2017

brkyvz pushed a commit to brkyvz/spark that referenced this pull request Mar 9, 2017

[SC-5935] Port Dynamic partition pruning to db-spark master
## What changes were proposed in this pull request?
This PR ports #131 over to DB Spark branch-2.2. This adds dynamic partition pruning (see the original PR #31 for more details on the feature).

I have moved all databricks specific code into the `com.databricks.sql` packages.

## How was this patch tested?
Created `DynamicPartitionPruningSuite`

Author: Herman van Hovell <hvanhovell@databricks.com>
Author: Davies Liu <davies@databricks.com>

Closes #266 from hvanhovell/SC-5935.

dongjoon-hyun pushed a commit to dongjoon-hyun/spark that referenced this pull request Mar 10, 2017

[SPARK-19008][SQL] Improve performance of Dataset.map by eliminating …
…boxing/unboxing

## What changes were proposed in this pull request?

This PR improve performance of Dataset.map() for primitive types by removing boxing/unbox operations. This is based on [the discussion](apache#16391 (comment)) with cloud-fan.

Current Catalyst generates a method call to a `apply()` method of an anonymous function written in Scala. The types of an argument and return value are `java.lang.Object`. As a result, each method call for a primitive value involves a pair of unboxing and boxing for calling this `apply()` method and a pair of boxing and unboxing for returning from this `apply()` method.

This PR directly calls a specialized version of a `apply()` method without boxing and unboxing. For example, if types of an arguments ant return value is `int`, this PR generates a method call to `apply$mcII$sp`. This PR supports any combination of `Int`, `Long`, `Float`, and `Double`.

The following is a benchmark result using [this program](https://github.com/apache/spark/pull/16391/files) with 4.7x. Here is a Dataset part of this program.

Without this PR
```
OpenJDK 64-Bit Server VM 1.8.0_111-8u111-b14-2ubuntu0.16.04.2-b14 on Linux 4.4.0-47-generic
Intel(R) Xeon(R) CPU E5-2667 v3  3.20GHz
back-to-back map:                        Best/Avg Time(ms)    Rate(M/s)   Per Row(ns)   Relative
------------------------------------------------------------------------------------------------
RDD                                           1923 / 1952         52.0          19.2       1.0X
DataFrame                                      526 /  548        190.2           5.3       3.7X
Dataset                                       3094 / 3154         32.3          30.9       0.6X
```

With this PR
```
OpenJDK 64-Bit Server VM 1.8.0_111-8u111-b14-2ubuntu0.16.04.2-b14 on Linux 4.4.0-47-generic
Intel(R) Xeon(R) CPU E5-2667 v3  3.20GHz
back-to-back map:                        Best/Avg Time(ms)    Rate(M/s)   Per Row(ns)   Relative
------------------------------------------------------------------------------------------------
RDD                                           1883 / 1892         53.1          18.8       1.0X
DataFrame                                      502 /  642        199.1           5.0       3.7X
Dataset                                        657 /  784        152.2           6.6       2.9X
```

```java
  def backToBackMap(spark: SparkSession, numRows: Long, numChains: Int): Benchmark = {
    import spark.implicits._
    val rdd = spark.sparkContext.range(0, numRows)
    val ds = spark.range(0, numRows)
    val func = (l: Long) => l + 1
    val benchmark = new Benchmark("back-to-back map", numRows)
...
    benchmark.addCase("Dataset") { iter =>
      var res = ds.as[Long]
      var i = 0
      while (i < numChains) {
        res = res.map(func)
        i += 1
      }
      res.queryExecution.toRdd.foreach(_ => Unit)
    }
    benchmark
  }
```

A motivating example
```java
Seq(1, 2, 3).toDS.map(i => i * 7).show
```

Generated code without this PR
```java
/* 005 */ final class GeneratedIterator extends org.apache.spark.sql.execution.BufferedRowIterator {
/* 006 */   private Object[] references;
/* 007 */   private scala.collection.Iterator[] inputs;
/* 008 */   private scala.collection.Iterator inputadapter_input;
/* 009 */   private UnsafeRow deserializetoobject_result;
/* 010 */   private org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder deserializetoobject_holder;
/* 011 */   private org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter deserializetoobject_rowWriter;
/* 012 */   private int mapelements_argValue;
/* 013 */   private UnsafeRow mapelements_result;
/* 014 */   private org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder mapelements_holder;
/* 015 */   private org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter mapelements_rowWriter;
/* 016 */   private UnsafeRow serializefromobject_result;
/* 017 */   private org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder serializefromobject_holder;
/* 018 */   private org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter serializefromobject_rowWriter;
/* 019 */
/* 020 */   public GeneratedIterator(Object[] references) {
/* 021 */     this.references = references;
/* 022 */   }
/* 023 */
/* 024 */   public void init(int index, scala.collection.Iterator[] inputs) {
/* 025 */     partitionIndex = index;
/* 026 */     this.inputs = inputs;
/* 027 */     inputadapter_input = inputs[0];
/* 028 */     deserializetoobject_result = new UnsafeRow(1);
/* 029 */     this.deserializetoobject_holder = new org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder(deserializetoobject_result, 0);
/* 030 */     this.deserializetoobject_rowWriter = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(deserializetoobject_holder, 1);
/* 031 */
/* 032 */     mapelements_result = new UnsafeRow(1);
/* 033 */     this.mapelements_holder = new org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder(mapelements_result, 0);
/* 034 */     this.mapelements_rowWriter = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(mapelements_holder, 1);
/* 035 */     serializefromobject_result = new UnsafeRow(1);
/* 036 */     this.serializefromobject_holder = new org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder(serializefromobject_result, 0);
/* 037 */     this.serializefromobject_rowWriter = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(serializefromobject_holder, 1);
/* 038 */
/* 039 */   }
/* 040 */
/* 041 */   protected void processNext() throws java.io.IOException {
/* 042 */     while (inputadapter_input.hasNext() && !stopEarly()) {
/* 043 */       InternalRow inputadapter_row = (InternalRow) inputadapter_input.next();
/* 044 */       int inputadapter_value = inputadapter_row.getInt(0);
/* 045 */
/* 046 */       boolean mapelements_isNull = true;
/* 047 */       int mapelements_value = -1;
/* 048 */       if (!false) {
/* 049 */         mapelements_argValue = inputadapter_value;
/* 050 */
/* 051 */         mapelements_isNull = false;
/* 052 */         if (!mapelements_isNull) {
/* 053 */           Object mapelements_funcResult = null;
/* 054 */           mapelements_funcResult = ((scala.Function1) references[0]).apply(mapelements_argValue);
/* 055 */           if (mapelements_funcResult == null) {
/* 056 */             mapelements_isNull = true;
/* 057 */           } else {
/* 058 */             mapelements_value = (Integer) mapelements_funcResult;
/* 059 */           }
/* 060 */
/* 061 */         }
/* 062 */
/* 063 */       }
/* 064 */
/* 065 */       serializefromobject_rowWriter.zeroOutNullBytes();
/* 066 */
/* 067 */       if (mapelements_isNull) {
/* 068 */         serializefromobject_rowWriter.setNullAt(0);
/* 069 */       } else {
/* 070 */         serializefromobject_rowWriter.write(0, mapelements_value);
/* 071 */       }
/* 072 */       append(serializefromobject_result);
/* 073 */       if (shouldStop()) return;
/* 074 */     }
/* 075 */   }
/* 076 */ }
```

Generated code with this PR (lines 48-56 are changed)
```java
/* 005 */ final class GeneratedIterator extends org.apache.spark.sql.execution.BufferedRowIterator {
/* 006 */   private Object[] references;
/* 007 */   private scala.collection.Iterator[] inputs;
/* 008 */   private scala.collection.Iterator inputadapter_input;
/* 009 */   private UnsafeRow deserializetoobject_result;
/* 010 */   private org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder deserializetoobject_holder;
/* 011 */   private org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter deserializetoobject_rowWriter;
/* 012 */   private int mapelements_argValue;
/* 013 */   private UnsafeRow mapelements_result;
/* 014 */   private org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder mapelements_holder;
/* 015 */   private org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter mapelements_rowWriter;
/* 016 */   private UnsafeRow serializefromobject_result;
/* 017 */   private org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder serializefromobject_holder;
/* 018 */   private org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter serializefromobject_rowWriter;
/* 019 */
/* 020 */   public GeneratedIterator(Object[] references) {
/* 021 */     this.references = references;
/* 022 */   }
/* 023 */
/* 024 */   public void init(int index, scala.collection.Iterator[] inputs) {
/* 025 */     partitionIndex = index;
/* 026 */     this.inputs = inputs;
/* 027 */     inputadapter_input = inputs[0];
/* 028 */     deserializetoobject_result = new UnsafeRow(1);
/* 029 */     this.deserializetoobject_holder = new org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder(deserializetoobject_result, 0);
/* 030 */     this.deserializetoobject_rowWriter = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(deserializetoobject_holder, 1);
/* 031 */
/* 032 */     mapelements_result = new UnsafeRow(1);
/* 033 */     this.mapelements_holder = new org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder(mapelements_result, 0);
/* 034 */     this.mapelements_rowWriter = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(mapelements_holder, 1);
/* 035 */     serializefromobject_result = new UnsafeRow(1);
/* 036 */     this.serializefromobject_holder = new org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder(serializefromobject_result, 0);
/* 037 */     this.serializefromobject_rowWriter = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(serializefromobject_holder, 1);
/* 038 */
/* 039 */   }
/* 040 */
/* 041 */   protected void processNext() throws java.io.IOException {
/* 042 */     while (inputadapter_input.hasNext() && !stopEarly()) {
/* 043 */       InternalRow inputadapter_row = (InternalRow) inputadapter_input.next();
/* 044 */       int inputadapter_value = inputadapter_row.getInt(0);
/* 045 */
/* 046 */       boolean mapelements_isNull = true;
/* 047 */       int mapelements_value = -1;
/* 048 */       if (!false) {
/* 049 */         mapelements_argValue = inputadapter_value;
/* 050 */
/* 051 */         mapelements_isNull = false;
/* 052 */         if (!mapelements_isNull) {
/* 053 */           mapelements_value = ((scala.Function1) references[0]).apply$mcII$sp(mapelements_argValue);
/* 054 */         }
/* 055 */
/* 056 */       }
/* 057 */
/* 058 */       serializefromobject_rowWriter.zeroOutNullBytes();
/* 059 */
/* 060 */       if (mapelements_isNull) {
/* 061 */         serializefromobject_rowWriter.setNullAt(0);
/* 062 */       } else {
/* 063 */         serializefromobject_rowWriter.write(0, mapelements_value);
/* 064 */       }
/* 065 */       append(serializefromobject_result);
/* 066 */       if (shouldStop()) return;
/* 067 */     }
/* 068 */   }
/* 069 */ }
```

Java bytecode for methods for `i => i * 7`
```java
$ javap -c Test\$\$anonfun\$5\$\$anonfun\$apply\$mcV\$sp\$1.class
Compiled from "Test.scala"
public final class org.apache.spark.sql.Test$$anonfun$5$$anonfun$apply$mcV$sp$1 extends scala.runtime.AbstractFunction1$mcII$sp implements scala.Serializable {
  public static final long serialVersionUID;

  public final int apply(int);
    Code:
       0: aload_0
       1: iload_1
       2: invokevirtual #18                 // Method apply$mcII$sp:(I)I
       5: ireturn

  public int apply$mcII$sp(int);
    Code:
       0: iload_1
       1: bipush        7
       3: imul
       4: ireturn

  public final java.lang.Object apply(java.lang.Object);
    Code:
       0: aload_0
       1: aload_1
       2: invokestatic  #29                 // Method scala/runtime/BoxesRunTime.unboxToInt:(Ljava/lang/Object;)I
       5: invokevirtual #31                 // Method apply:(I)I
       8: invokestatic  #35                 // Method scala/runtime/BoxesRunTime.boxToInteger:(I)Ljava/lang/Integer;
      11: areturn

  public org.apache.spark.sql.Test$$anonfun$5$$anonfun$apply$mcV$sp$1(org.apache.spark.sql.Test$$anonfun$5);
    Code:
       0: aload_0
       1: invokespecial #42                 // Method scala/runtime/AbstractFunction1$mcII$sp."<init>":()V
       4: return
}
```
## How was this patch tested?

Added new test suites to `DatasetPrimitiveSuite`.

Author: Kazuaki Ishizaki <ishizaki@jp.ibm.com>

Closes #17172 from kiszk/SPARK-19008.

lins05 pushed a commit to lins05/spark that referenced this pull request Apr 23, 2017

ThySinner added a commit to ThySinner/spark that referenced this pull request Jun 9, 2017

[SPARK-19008][SQL] Improve performance of Dataset.map by eliminating …
…boxing/unboxing

## What changes were proposed in this pull request?

This PR improve performance of Dataset.map() for primitive types by removing boxing/unbox operations. This is based on [the discussion](apache#16391 (comment)) with cloud-fan.

Current Catalyst generates a method call to a `apply()` method of an anonymous function written in Scala. The types of an argument and return value are `java.lang.Object`. As a result, each method call for a primitive value involves a pair of unboxing and boxing for calling this `apply()` method and a pair of boxing and unboxing for returning from this `apply()` method.

This PR directly calls a specialized version of a `apply()` method without boxing and unboxing. For example, if types of an arguments ant return value is `int`, this PR generates a method call to `apply$mcII$sp`. This PR supports any combination of `Int`, `Long`, `Float`, and `Double`.

The following is a benchmark result using [this program](https://github.com/apache/spark/pull/16391/files) with 4.7x. Here is a Dataset part of this program.

Without this PR
```
OpenJDK 64-Bit Server VM 1.8.0_111-8u111-b14-2ubuntu0.16.04.2-b14 on Linux 4.4.0-47-generic
Intel(R) Xeon(R) CPU E5-2667 v3  3.20GHz
back-to-back map:                        Best/Avg Time(ms)    Rate(M/s)   Per Row(ns)   Relative
------------------------------------------------------------------------------------------------
RDD                                           1923 / 1952         52.0          19.2       1.0X
DataFrame                                      526 /  548        190.2           5.3       3.7X
Dataset                                       3094 / 3154         32.3          30.9       0.6X
```

With this PR
```
OpenJDK 64-Bit Server VM 1.8.0_111-8u111-b14-2ubuntu0.16.04.2-b14 on Linux 4.4.0-47-generic
Intel(R) Xeon(R) CPU E5-2667 v3  3.20GHz
back-to-back map:                        Best/Avg Time(ms)    Rate(M/s)   Per Row(ns)   Relative
------------------------------------------------------------------------------------------------
RDD                                           1883 / 1892         53.1          18.8       1.0X
DataFrame                                      502 /  642        199.1           5.0       3.7X
Dataset                                        657 /  784        152.2           6.6       2.9X
```

```java
  def backToBackMap(spark: SparkSession, numRows: Long, numChains: Int): Benchmark = {
    import spark.implicits._
    val rdd = spark.sparkContext.range(0, numRows)
    val ds = spark.range(0, numRows)
    val func = (l: Long) => l + 1
    val benchmark = new Benchmark("back-to-back map", numRows)
...
    benchmark.addCase("Dataset") { iter =>
      var res = ds.as[Long]
      var i = 0
      while (i < numChains) {
        res = res.map(func)
        i += 1
      }
      res.queryExecution.toRdd.foreach(_ => Unit)
    }
    benchmark
  }
```

A motivating example
```java
Seq(1, 2, 3).toDS.map(i => i * 7).show
```

Generated code without this PR
```java
/* 005 */ final class GeneratedIterator extends org.apache.spark.sql.execution.BufferedRowIterator {
/* 006 */   private Object[] references;
/* 007 */   private scala.collection.Iterator[] inputs;
/* 008 */   private scala.collection.Iterator inputadapter_input;
/* 009 */   private UnsafeRow deserializetoobject_result;
/* 010 */   private org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder deserializetoobject_holder;
/* 011 */   private org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter deserializetoobject_rowWriter;
/* 012 */   private int mapelements_argValue;
/* 013 */   private UnsafeRow mapelements_result;
/* 014 */   private org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder mapelements_holder;
/* 015 */   private org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter mapelements_rowWriter;
/* 016 */   private UnsafeRow serializefromobject_result;
/* 017 */   private org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder serializefromobject_holder;
/* 018 */   private org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter serializefromobject_rowWriter;
/* 019 */
/* 020 */   public GeneratedIterator(Object[] references) {
/* 021 */     this.references = references;
/* 022 */   }
/* 023 */
/* 024 */   public void init(int index, scala.collection.Iterator[] inputs) {
/* 025 */     partitionIndex = index;
/* 026 */     this.inputs = inputs;
/* 027 */     inputadapter_input = inputs[0];
/* 028 */     deserializetoobject_result = new UnsafeRow(1);
/* 029 */     this.deserializetoobject_holder = new org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder(deserializetoobject_result, 0);
/* 030 */     this.deserializetoobject_rowWriter = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(deserializetoobject_holder, 1);
/* 031 */
/* 032 */     mapelements_result = new UnsafeRow(1);
/* 033 */     this.mapelements_holder = new org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder(mapelements_result, 0);
/* 034 */     this.mapelements_rowWriter = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(mapelements_holder, 1);
/* 035 */     serializefromobject_result = new UnsafeRow(1);
/* 036 */     this.serializefromobject_holder = new org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder(serializefromobject_result, 0);
/* 037 */     this.serializefromobject_rowWriter = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(serializefromobject_holder, 1);
/* 038 */
/* 039 */   }
/* 040 */
/* 041 */   protected void processNext() throws java.io.IOException {
/* 042 */     while (inputadapter_input.hasNext() && !stopEarly()) {
/* 043 */       InternalRow inputadapter_row = (InternalRow) inputadapter_input.next();
/* 044 */       int inputadapter_value = inputadapter_row.getInt(0);
/* 045 */
/* 046 */       boolean mapelements_isNull = true;
/* 047 */       int mapelements_value = -1;
/* 048 */       if (!false) {
/* 049 */         mapelements_argValue = inputadapter_value;
/* 050 */
/* 051 */         mapelements_isNull = false;
/* 052 */         if (!mapelements_isNull) {
/* 053 */           Object mapelements_funcResult = null;
/* 054 */           mapelements_funcResult = ((scala.Function1) references[0]).apply(mapelements_argValue);
/* 055 */           if (mapelements_funcResult == null) {
/* 056 */             mapelements_isNull = true;
/* 057 */           } else {
/* 058 */             mapelements_value = (Integer) mapelements_funcResult;
/* 059 */           }
/* 060 */
/* 061 */         }
/* 062 */
/* 063 */       }
/* 064 */
/* 065 */       serializefromobject_rowWriter.zeroOutNullBytes();
/* 066 */
/* 067 */       if (mapelements_isNull) {
/* 068 */         serializefromobject_rowWriter.setNullAt(0);
/* 069 */       } else {
/* 070 */         serializefromobject_rowWriter.write(0, mapelements_value);
/* 071 */       }
/* 072 */       append(serializefromobject_result);
/* 073 */       if (shouldStop()) return;
/* 074 */     }
/* 075 */   }
/* 076 */ }
```

Generated code with this PR (lines 48-56 are changed)
```java
/* 005 */ final class GeneratedIterator extends org.apache.spark.sql.execution.BufferedRowIterator {
/* 006 */   private Object[] references;
/* 007 */   private scala.collection.Iterator[] inputs;
/* 008 */   private scala.collection.Iterator inputadapter_input;
/* 009 */   private UnsafeRow deserializetoobject_result;
/* 010 */   private org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder deserializetoobject_holder;
/* 011 */   private org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter deserializetoobject_rowWriter;
/* 012 */   private int mapelements_argValue;
/* 013 */   private UnsafeRow mapelements_result;
/* 014 */   private org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder mapelements_holder;
/* 015 */   private org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter mapelements_rowWriter;
/* 016 */   private UnsafeRow serializefromobject_result;
/* 017 */   private org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder serializefromobject_holder;
/* 018 */   private org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter serializefromobject_rowWriter;
/* 019 */
/* 020 */   public GeneratedIterator(Object[] references) {
/* 021 */     this.references = references;
/* 022 */   }
/* 023 */
/* 024 */   public void init(int index, scala.collection.Iterator[] inputs) {
/* 025 */     partitionIndex = index;
/* 026 */     this.inputs = inputs;
/* 027 */     inputadapter_input = inputs[0];
/* 028 */     deserializetoobject_result = new UnsafeRow(1);
/* 029 */     this.deserializetoobject_holder = new org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder(deserializetoobject_result, 0);
/* 030 */     this.deserializetoobject_rowWriter = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(deserializetoobject_holder, 1);
/* 031 */
/* 032 */     mapelements_result = new UnsafeRow(1);
/* 033 */     this.mapelements_holder = new org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder(mapelements_result, 0);
/* 034 */     this.mapelements_rowWriter = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(mapelements_holder, 1);
/* 035 */     serializefromobject_result = new UnsafeRow(1);
/* 036 */     this.serializefromobject_holder = new org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder(serializefromobject_result, 0);
/* 037 */     this.serializefromobject_rowWriter = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(serializefromobject_holder, 1);
/* 038 */
/* 039 */   }
/* 040 */
/* 041 */   protected void processNext() throws java.io.IOException {
/* 042 */     while (inputadapter_input.hasNext() && !stopEarly()) {
/* 043 */       InternalRow inputadapter_row = (InternalRow) inputadapter_input.next();
/* 044 */       int inputadapter_value = inputadapter_row.getInt(0);
/* 045 */
/* 046 */       boolean mapelements_isNull = true;
/* 047 */       int mapelements_value = -1;
/* 048 */       if (!false) {
/* 049 */         mapelements_argValue = inputadapter_value;
/* 050 */
/* 051 */         mapelements_isNull = false;
/* 052 */         if (!mapelements_isNull) {
/* 053 */           mapelements_value = ((scala.Function1) references[0]).apply$mcII$sp(mapelements_argValue);
/* 054 */         }
/* 055 */
/* 056 */       }
/* 057 */
/* 058 */       serializefromobject_rowWriter.zeroOutNullBytes();
/* 059 */
/* 060 */       if (mapelements_isNull) {
/* 061 */         serializefromobject_rowWriter.setNullAt(0);
/* 062 */       } else {
/* 063 */         serializefromobject_rowWriter.write(0, mapelements_value);
/* 064 */       }
/* 065 */       append(serializefromobject_result);
/* 066 */       if (shouldStop()) return;
/* 067 */     }
/* 068 */   }
/* 069 */ }
```

Java bytecode for methods for `i => i * 7`
```java
$ javap -c Test\$\$anonfun\$5\$\$anonfun\$apply\$mcV\$sp\$1.class
Compiled from "Test.scala"
public final class org.apache.spark.sql.Test$$anonfun$5$$anonfun$apply$mcV$sp$1 extends scala.runtime.AbstractFunction1$mcII$sp implements scala.Serializable {
  public static final long serialVersionUID;

  public final int apply(int);
    Code:
       0: aload_0
       1: iload_1
       2: invokevirtual #18                 // Method apply$mcII$sp:(I)I
       5: ireturn

  public int apply$mcII$sp(int);
    Code:
       0: iload_1
       1: bipush        7
       3: imul
       4: ireturn

  public final java.lang.Object apply(java.lang.Object);
    Code:
       0: aload_0
       1: aload_1
       2: invokestatic  #29                 // Method scala/runtime/BoxesRunTime.unboxToInt:(Ljava/lang/Object;)I
       5: invokevirtual #31                 // Method apply:(I)I
       8: invokestatic  #35                 // Method scala/runtime/BoxesRunTime.boxToInteger:(I)Ljava/lang/Integer;
      11: areturn

  public org.apache.spark.sql.Test$$anonfun$5$$anonfun$apply$mcV$sp$1(org.apache.spark.sql.Test$$anonfun$5);
    Code:
       0: aload_0
       1: invokespecial #42                 // Method scala/runtime/AbstractFunction1$mcII$sp."<init>":()V
       4: return
}
```
## How was this patch tested?

Added new test suites to `DatasetPrimitiveSuite`.

Author: Kazuaki Ishizaki <ishizaki@jp.ibm.com>

Closes #17172 from kiszk/SPARK-19008.

erikerlandson pushed a commit to erikerlandson/spark that referenced this pull request Jul 28, 2017

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment