-
Notifications
You must be signed in to change notification settings - Fork 28.3k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[SPARK-7568][ML] ml.LogisticRegression doesn't output the right prediction #6109
Conversation
Merged build triggered. |
Merged build started. |
Test build #32584 has started for PR 6109 at commit |
Test build #32584 has finished for PR 6109 at commit
|
Merged build finished. Test PASSed. |
Test PASSed. |
Merged build triggered. |
Merged build started. |
Test build #32596 has started for PR 6109 at commit |
Test build #32596 has finished for PR 6109 at commit
|
Merged build finished. Test PASSed. |
Test PASSed. |
…iction The difference is because we previously don't fit the intercept in Spark 1.3. Here, we change the input `String` so that the probability of instance 6 can be classified as `1.0` without any ambiguity. with lambda = 0.001 in current LOR implementation, the prediction is ``` (4, spark i j k) --> prob=[0.1596407738787411,0.8403592261212589], prediction=1.0 (5, l m n) --> prob=[0.8378325685476612,0.16216743145233883], prediction=0.0 (6, spark hadoop spark) --> prob=[0.0692663313297627,0.9307336686702373], prediction=1.0 (7, apache hadoop) --> prob=[0.9821575333444208,0.01784246665557917], prediction=0.0 ``` and the training accuracy is ``` (0, a b c d e spark) --> prob=[0.0021342419881406746,0.9978657580118594], prediction=1.0 (1, b d) --> prob=[0.9959176174854043,0.004082382514595685], prediction=0.0 (2, spark f g h) --> prob=[0.0014541569986711233,0.9985458430013289], prediction=1.0 (3, hadoop mapreduce) --> prob=[0.9982978367343561,0.0017021632656438518], prediction=0.0 ``` Author: DB Tsai <dbt@netflix.com> Closes #6109 from dbtsai/lor-example and squashes the following commits: ac63ce4 [DB Tsai] first commit (cherry picked from commit c1080b6) Signed-off-by: Xiangrui Meng <meng@databricks.com>
LGTM. Merged into master and branch-1.4. Thanks! |
…iction The difference is because we previously don't fit the intercept in Spark 1.3. Here, we change the input `String` so that the probability of instance 6 can be classified as `1.0` without any ambiguity. with lambda = 0.001 in current LOR implementation, the prediction is ``` (4, spark i j k) --> prob=[0.1596407738787411,0.8403592261212589], prediction=1.0 (5, l m n) --> prob=[0.8378325685476612,0.16216743145233883], prediction=0.0 (6, spark hadoop spark) --> prob=[0.0692663313297627,0.9307336686702373], prediction=1.0 (7, apache hadoop) --> prob=[0.9821575333444208,0.01784246665557917], prediction=0.0 ``` and the training accuracy is ``` (0, a b c d e spark) --> prob=[0.0021342419881406746,0.9978657580118594], prediction=1.0 (1, b d) --> prob=[0.9959176174854043,0.004082382514595685], prediction=0.0 (2, spark f g h) --> prob=[0.0014541569986711233,0.9985458430013289], prediction=1.0 (3, hadoop mapreduce) --> prob=[0.9982978367343561,0.0017021632656438518], prediction=0.0 ``` Author: DB Tsai <dbt@netflix.com> Closes apache#6109 from dbtsai/lor-example and squashes the following commits: ac63ce4 [DB Tsai] first commit
…iction The difference is because we previously don't fit the intercept in Spark 1.3. Here, we change the input `String` so that the probability of instance 6 can be classified as `1.0` without any ambiguity. with lambda = 0.001 in current LOR implementation, the prediction is ``` (4, spark i j k) --> prob=[0.1596407738787411,0.8403592261212589], prediction=1.0 (5, l m n) --> prob=[0.8378325685476612,0.16216743145233883], prediction=0.0 (6, spark hadoop spark) --> prob=[0.0692663313297627,0.9307336686702373], prediction=1.0 (7, apache hadoop) --> prob=[0.9821575333444208,0.01784246665557917], prediction=0.0 ``` and the training accuracy is ``` (0, a b c d e spark) --> prob=[0.0021342419881406746,0.9978657580118594], prediction=1.0 (1, b d) --> prob=[0.9959176174854043,0.004082382514595685], prediction=0.0 (2, spark f g h) --> prob=[0.0014541569986711233,0.9985458430013289], prediction=1.0 (3, hadoop mapreduce) --> prob=[0.9982978367343561,0.0017021632656438518], prediction=0.0 ``` Author: DB Tsai <dbt@netflix.com> Closes apache#6109 from dbtsai/lor-example and squashes the following commits: ac63ce4 [DB Tsai] first commit
…iction The difference is because we previously don't fit the intercept in Spark 1.3. Here, we change the input `String` so that the probability of instance 6 can be classified as `1.0` without any ambiguity. with lambda = 0.001 in current LOR implementation, the prediction is ``` (4, spark i j k) --> prob=[0.1596407738787411,0.8403592261212589], prediction=1.0 (5, l m n) --> prob=[0.8378325685476612,0.16216743145233883], prediction=0.0 (6, spark hadoop spark) --> prob=[0.0692663313297627,0.9307336686702373], prediction=1.0 (7, apache hadoop) --> prob=[0.9821575333444208,0.01784246665557917], prediction=0.0 ``` and the training accuracy is ``` (0, a b c d e spark) --> prob=[0.0021342419881406746,0.9978657580118594], prediction=1.0 (1, b d) --> prob=[0.9959176174854043,0.004082382514595685], prediction=0.0 (2, spark f g h) --> prob=[0.0014541569986711233,0.9985458430013289], prediction=1.0 (3, hadoop mapreduce) --> prob=[0.9982978367343561,0.0017021632656438518], prediction=0.0 ``` Author: DB Tsai <dbt@netflix.com> Closes apache#6109 from dbtsai/lor-example and squashes the following commits: ac63ce4 [DB Tsai] first commit
The difference is because we previously don't fit the intercept in Spark 1.3. Here, we change the input
String
so that the probability of instance 6 can be classified as1.0
without any ambiguity.with lambda = 0.001 in current LOR implementation, the prediction is
and the training accuracy is