Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[SPARK-7568][ML] ml.LogisticRegression doesn't output the right prediction #6109

Closed
wants to merge 1 commit into from

Conversation

dbtsai
Copy link
Member

@dbtsai dbtsai commented May 13, 2015

The difference is because we previously don't fit the intercept in Spark 1.3. Here, we change the input String so that the probability of instance 6 can be classified as 1.0 without any ambiguity.

with lambda = 0.001 in current LOR implementation, the prediction is

(4, spark i j k) --> prob=[0.1596407738787411,0.8403592261212589], prediction=1.0
(5, l m n) --> prob=[0.8378325685476612,0.16216743145233883], prediction=0.0
(6, spark hadoop spark) --> prob=[0.0692663313297627,0.9307336686702373], prediction=1.0
(7, apache hadoop) --> prob=[0.9821575333444208,0.01784246665557917], prediction=0.0

and the training accuracy is

(0, a b c d e spark) --> prob=[0.0021342419881406746,0.9978657580118594], prediction=1.0
(1, b d) --> prob=[0.9959176174854043,0.004082382514595685], prediction=0.0
(2, spark f g h) --> prob=[0.0014541569986711233,0.9985458430013289], prediction=1.0
(3, hadoop mapreduce) --> prob=[0.9982978367343561,0.0017021632656438518], prediction=0.0

@AmplabJenkins
Copy link

Merged build triggered.

@AmplabJenkins
Copy link

Merged build started.

@SparkQA
Copy link

SparkQA commented May 13, 2015

Test build #32584 has started for PR 6109 at commit 8f40ccd.

@SparkQA
Copy link

SparkQA commented May 13, 2015

Test build #32584 has finished for PR 6109 at commit 8f40ccd.

  • This patch passes all tests.
  • This patch merges cleanly.
  • This patch adds no public classes.

@AmplabJenkins
Copy link

Merged build finished. Test PASSed.

@AmplabJenkins
Copy link

Test PASSed.
Refer to this link for build results (access rights to CI server needed):
https://amplab.cs.berkeley.edu/jenkins/job/SparkPullRequestBuilder/32584/
Test PASSed.

@AmplabJenkins
Copy link

Merged build triggered.

@AmplabJenkins
Copy link

Merged build started.

@SparkQA
Copy link

SparkQA commented May 13, 2015

Test build #32596 has started for PR 6109 at commit ac63ce4.

@SparkQA
Copy link

SparkQA commented May 13, 2015

Test build #32596 has finished for PR 6109 at commit ac63ce4.

  • This patch passes all tests.
  • This patch merges cleanly.
  • This patch adds no public classes.

@AmplabJenkins
Copy link

Merged build finished. Test PASSed.

@AmplabJenkins
Copy link

Test PASSed.
Refer to this link for build results (access rights to CI server needed):
https://amplab.cs.berkeley.edu/jenkins/job/SparkPullRequestBuilder/32596/
Test PASSed.

asfgit pushed a commit that referenced this pull request May 14, 2015
…iction

The difference is because we previously don't fit the intercept in Spark 1.3. Here, we change the input `String` so that the probability of instance 6 can be classified as `1.0` without any ambiguity.

with lambda = 0.001 in current LOR implementation, the prediction is
```
(4, spark i j k) --> prob=[0.1596407738787411,0.8403592261212589], prediction=1.0
(5, l m n) --> prob=[0.8378325685476612,0.16216743145233883], prediction=0.0
(6, spark hadoop spark) --> prob=[0.0692663313297627,0.9307336686702373], prediction=1.0
(7, apache hadoop) --> prob=[0.9821575333444208,0.01784246665557917], prediction=0.0
```
and the training accuracy is
```
(0, a b c d e spark) --> prob=[0.0021342419881406746,0.9978657580118594], prediction=1.0
(1, b d) --> prob=[0.9959176174854043,0.004082382514595685], prediction=0.0
(2, spark f g h) --> prob=[0.0014541569986711233,0.9985458430013289], prediction=1.0
(3, hadoop mapreduce) --> prob=[0.9982978367343561,0.0017021632656438518], prediction=0.0
```

Author: DB Tsai <dbt@netflix.com>

Closes #6109 from dbtsai/lor-example and squashes the following commits:

ac63ce4 [DB Tsai] first commit

(cherry picked from commit c1080b6)
Signed-off-by: Xiangrui Meng <meng@databricks.com>
@mengxr
Copy link
Contributor

mengxr commented May 14, 2015

LGTM. Merged into master and branch-1.4. Thanks!

@asfgit asfgit closed this in c1080b6 May 14, 2015
jeanlyn pushed a commit to jeanlyn/spark that referenced this pull request May 28, 2015
…iction

The difference is because we previously don't fit the intercept in Spark 1.3. Here, we change the input `String` so that the probability of instance 6 can be classified as `1.0` without any ambiguity.

with lambda = 0.001 in current LOR implementation, the prediction is
```
(4, spark i j k) --> prob=[0.1596407738787411,0.8403592261212589], prediction=1.0
(5, l m n) --> prob=[0.8378325685476612,0.16216743145233883], prediction=0.0
(6, spark hadoop spark) --> prob=[0.0692663313297627,0.9307336686702373], prediction=1.0
(7, apache hadoop) --> prob=[0.9821575333444208,0.01784246665557917], prediction=0.0
```
and the training accuracy is
```
(0, a b c d e spark) --> prob=[0.0021342419881406746,0.9978657580118594], prediction=1.0
(1, b d) --> prob=[0.9959176174854043,0.004082382514595685], prediction=0.0
(2, spark f g h) --> prob=[0.0014541569986711233,0.9985458430013289], prediction=1.0
(3, hadoop mapreduce) --> prob=[0.9982978367343561,0.0017021632656438518], prediction=0.0
```

Author: DB Tsai <dbt@netflix.com>

Closes apache#6109 from dbtsai/lor-example and squashes the following commits:

ac63ce4 [DB Tsai] first commit
jeanlyn pushed a commit to jeanlyn/spark that referenced this pull request Jun 12, 2015
…iction

The difference is because we previously don't fit the intercept in Spark 1.3. Here, we change the input `String` so that the probability of instance 6 can be classified as `1.0` without any ambiguity.

with lambda = 0.001 in current LOR implementation, the prediction is
```
(4, spark i j k) --> prob=[0.1596407738787411,0.8403592261212589], prediction=1.0
(5, l m n) --> prob=[0.8378325685476612,0.16216743145233883], prediction=0.0
(6, spark hadoop spark) --> prob=[0.0692663313297627,0.9307336686702373], prediction=1.0
(7, apache hadoop) --> prob=[0.9821575333444208,0.01784246665557917], prediction=0.0
```
and the training accuracy is
```
(0, a b c d e spark) --> prob=[0.0021342419881406746,0.9978657580118594], prediction=1.0
(1, b d) --> prob=[0.9959176174854043,0.004082382514595685], prediction=0.0
(2, spark f g h) --> prob=[0.0014541569986711233,0.9985458430013289], prediction=1.0
(3, hadoop mapreduce) --> prob=[0.9982978367343561,0.0017021632656438518], prediction=0.0
```

Author: DB Tsai <dbt@netflix.com>

Closes apache#6109 from dbtsai/lor-example and squashes the following commits:

ac63ce4 [DB Tsai] first commit
nemccarthy pushed a commit to nemccarthy/spark that referenced this pull request Jun 19, 2015
…iction

The difference is because we previously don't fit the intercept in Spark 1.3. Here, we change the input `String` so that the probability of instance 6 can be classified as `1.0` without any ambiguity.

with lambda = 0.001 in current LOR implementation, the prediction is
```
(4, spark i j k) --> prob=[0.1596407738787411,0.8403592261212589], prediction=1.0
(5, l m n) --> prob=[0.8378325685476612,0.16216743145233883], prediction=0.0
(6, spark hadoop spark) --> prob=[0.0692663313297627,0.9307336686702373], prediction=1.0
(7, apache hadoop) --> prob=[0.9821575333444208,0.01784246665557917], prediction=0.0
```
and the training accuracy is
```
(0, a b c d e spark) --> prob=[0.0021342419881406746,0.9978657580118594], prediction=1.0
(1, b d) --> prob=[0.9959176174854043,0.004082382514595685], prediction=0.0
(2, spark f g h) --> prob=[0.0014541569986711233,0.9985458430013289], prediction=1.0
(3, hadoop mapreduce) --> prob=[0.9982978367343561,0.0017021632656438518], prediction=0.0
```

Author: DB Tsai <dbt@netflix.com>

Closes apache#6109 from dbtsai/lor-example and squashes the following commits:

ac63ce4 [DB Tsai] first commit
@dbtsai dbtsai deleted the lor-example branch June 20, 2015 23:24
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

4 participants