-
Notifications
You must be signed in to change notification settings - Fork 3.5k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Arm(R) Ethos(TM)-U NPU TIR passes and TE for Conv2D
This commit adds TE for conv2D op and the TIR passes to compile it down to a TIR primfunc. It also adds unit tests and partial integration test for the TIR compiler. Change-Id: I3dabc4660258381664466627c6c824808a71d438
- Loading branch information
Showing
25 changed files
with
4,076 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,17 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
"""Arm(R) Ethos(TM)-U NPU TIR codegen modules.""" |
199 changes: 199 additions & 0 deletions
199
python/tvm/relay/backend/contrib/ethosu/tir/compiler.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,199 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
# pylint: disable=invalid-name, unused-argument | ||
"""The integration of Arm(R) Ethos(TM)-U NPU TIR compiler""" | ||
import tvm | ||
from tvm import relay | ||
from tvm.relay.expr_functor import ExprMutator | ||
from tvm.driver.build_module import get_binds | ||
|
||
from .passes import ReplaceOperators, RemoveZeroStores, EncodeConstants | ||
from .scheduler import schedule | ||
|
||
|
||
def lower_ethosu(sch, args, const_dict, name="main"): | ||
"""Lower a schedule to TIR for the Arm(R) Ethos(TM)-U NPU target. | ||
The resulting TIR module will contain a single function | ||
that comprises of a sequence of tir.extern_calls to NPU | ||
operations. | ||
Parameters | ||
---------- | ||
sch : tvm.te.Schedule | ||
The schedule to be lowered. | ||
args : Union[list of tvm.te.Tensor, TEGraph] | ||
The input/output tensors. | ||
const_dict : dict of int to numpy.ndarray | ||
The constant dictionary. | ||
name : str, optional | ||
The name of the lowered primitive function. | ||
Returns | ||
------- | ||
mod : tvm.IRModule | ||
The lowered TIR module. | ||
const_dict : dict of int to numpy.ndarray | ||
The modified constant dictionary. | ||
""" | ||
if not isinstance(args, list): | ||
args = list(args.inputs) + list(args.outputs) | ||
# config setup | ||
curr_pass_ctx = tvm.ir.transform.PassContext.current() | ||
curr_cfg = dict() | ||
for key, value in curr_pass_ctx.config.items(): | ||
curr_cfg[key] = value | ||
tir_compiler_cfg = { | ||
"tir.LoopPartition": { | ||
"partition_const_loop": True, | ||
"no_unroll_loop_with_extent_one": True, | ||
}, | ||
"tir.UnrollLoop": {"auto_max_depth": -1}, | ||
} | ||
# Merge two configs | ||
curr_cfg = {**curr_cfg, **tir_compiler_cfg} | ||
|
||
sch = sch.normalize() | ||
bounds = tvm.te.schedule.InferBound(sch) | ||
stmt = tvm.te.schedule.ScheduleOps(sch, bounds, True) | ||
|
||
compact = tvm.te.schedule.VerifyCompactBuffer(stmt) | ||
binds, arg_list = get_binds(args, compact, None) | ||
func = tvm.te.schedule.SchedulePostProcToPrimFunc(arg_list, stmt, binds) | ||
|
||
func = func.with_attr("global_symbol", name) | ||
func = func.with_attr("tir.noalias", True) | ||
mod = tvm.IRModule({name: func}) | ||
with tvm.transform.PassContext(config=curr_cfg): | ||
mod = tvm.tir.transform.Simplify()(mod) | ||
mod = tvm.tir.transform.StorageFlatten(64)(mod) | ||
mod = tvm.tir.transform.UnrollLoop()(mod) | ||
mod = tvm.tir.transform.LoopPartition()(mod) | ||
mod = RemoveZeroStores()(mod) | ||
mod = tvm.tir.transform.Simplify()(mod) | ||
mod = tvm.tir.transform.RemoveNoOp()(mod) | ||
mod = ReplaceOperators()(mod) | ||
mod = tvm.tir.transform.RemoveNoOp()(mod) | ||
mod, const_dict = EncodeConstants(const_dict)(mod) | ||
mod = tvm.tir.transform.StorageRewrite()(mod) | ||
mod = tvm.tir.transform.RemoveNoOp()(mod) | ||
return mod, const_dict | ||
|
||
|
||
def lower_to_te(prim_func): | ||
"""Lower a Relay primitive function to a Tensor Expression graph. | ||
Parameters | ||
---------- | ||
prim_func : tvm.relay.Function | ||
The Relay function to lowerethosu_runtime([]). | ||
Returns | ||
------- | ||
out : TEGraph | ||
The lowered Tensor Expression graph. | ||
""" | ||
f = tvm._ffi.get_global_func("relay.backend.contrib.ethosu.LowerToTE") | ||
return f(prim_func) | ||
|
||
|
||
class ExtractConstants(ExprMutator): | ||
"""The actual mutator pass to extract the constants from a function and replace them with | ||
Vars so the function can be lowered to a TE graph. Additionally returns all the values of | ||
the constants extracted.""" | ||
|
||
def __init__(self): | ||
super().__init__() | ||
self.constants = [] | ||
|
||
def visit_constant(self, const): | ||
if isinstance(const.checked_type, relay.ty.TensorType): | ||
if const.checked_type.concrete_shape != (): | ||
self.constants.append(const.data.asnumpy()) | ||
name = "p" + str(len(self.constants)) | ||
return relay.var(type_annotation=const.checked_type, name_hint=name) | ||
|
||
return const | ||
|
||
def visit_function(self, fn): | ||
new_body = self.visit(fn.body) | ||
new_params = list(relay.analysis.free_vars(new_body)) | ||
return relay.Function(new_params, new_body) | ||
|
||
def extract_constants(self, func): | ||
new_func = self.visit(func) | ||
return new_func, self.constants | ||
|
||
|
||
def extract_constants(func): | ||
"""Extract the constants from a function and replace them with | ||
Vars so the function can be lowered to a TE graph. Additionally | ||
returns all the values of the constants extracted. | ||
Parameters | ||
---------- | ||
func : tvm.relay.Function | ||
The Relay function from which to extract constants. | ||
Returns | ||
------- | ||
new_func : tvm.relay.Function | ||
The Relay function with constants replaced by vars. | ||
const_dict : dict of int to numpy.ndarray | ||
A dict of the extracted constants keyed by their param index. | ||
""" | ||
const_dict = {} | ||
params = len(func.params) | ||
new_func, consts = ExtractConstants().extract_constants(func) | ||
for i, const in enumerate(consts): | ||
const_dict[params + i] = const | ||
|
||
new_func = tvm.relay.transform.InferType()(tvm.IRModule.from_expr(new_func))["main"] | ||
return new_func, const_dict | ||
|
||
|
||
def lower_to_tir(func, cascader=None): | ||
"""Lower a Relay function to TIR for the Arm(R) Ethos(TM)-U NPU target. | ||
The Relay function should only contain operations supported | ||
by the NPU. | ||
Parameters | ||
---------- | ||
func : tvm.relay.Function | ||
The Relay function to lower. | ||
cascader : Callable | ||
An optional cascading function, | ||
Returns | ||
------- | ||
mod : tvm.IRModule | ||
The lowered TIR module. | ||
consts : dict of int to numpy.ndarray | ||
A dict of the extracted constants keyed by their param index. | ||
""" | ||
func, consts = extract_constants(func) | ||
mod = tvm.IRModule.from_expr(func) | ||
func = relay.transform.InferType()(mod)["main"] | ||
te_graph = lower_to_te(func) | ||
s = schedule(te_graph, consts, cascader) | ||
mod, consts = lower_ethosu(s, te_graph, consts) | ||
return mod, consts |
106 changes: 106 additions & 0 deletions
106
python/tvm/relay/backend/contrib/ethosu/tir/convolution.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,106 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
# pylint: disable=invalid-name, unused-argument | ||
"""Extract information from the convolution operators in TIR.""" | ||
import tvm | ||
from ..vela_api import SCALE_BIAS_LENGTH | ||
from .utils import get_outer_loops, get_op_attrs, get_base_address | ||
from .dma import get_ifm_params, get_ofm_params | ||
from .spec import SerialKernel, SerialAddressRange, SerialActivation, Serial2DConvolution | ||
|
||
|
||
def get_conv2d_params(stmt, producers, consumers): | ||
"""Get the parameters necessary to construct a call_extern for a 2D convolution. | ||
Parameters | ||
---------- | ||
stmt : tvm.tir.AttrStmt | ||
The outermost attribute statement of a convolution loop nest. | ||
producers : dict of tvm.tir.Var to tvm.tir.AttrStmt | ||
A dictionary to associate pointers with the loop nest | ||
that produces their values. | ||
consumers : dict of tvm.tir.Var to tvm.tir.AttrStmt | ||
A dictionary to associate pointers with the loop nest | ||
that consumes their values. | ||
Returns | ||
------- | ||
Serial2DConvolution | ||
The parameters needed to construct a 2D convolution. | ||
output_pointer : tvm.tir.Var | ||
The output pointer of the convolution operation. | ||
replace_pointer : tvm.tir.Var | ||
The output pointer of the DMA write operation, which is to replace | ||
the convolution output pointer. | ||
""" | ||
attrs, body = get_op_attrs(stmt) | ||
_, _, _, _, _, inner = get_outer_loops(body, "NHWC") | ||
rh = inner | ||
rw = rh.body | ||
rc = rw.body | ||
compute = rc.body.value.b | ||
input_pointer = compute.a.a.buffer_var | ||
output_pointer = rc.body.buffer_var | ||
# Get feature map info | ||
serial_ifm, serial_padding = get_ifm_params(input_pointer, producers) | ||
serial_ofm, replace_pointer = get_ofm_params(output_pointer, consumers) | ||
# Get kernel info | ||
serial_kernel = SerialKernel( | ||
width=int(rw.extent), | ||
height=int(rh.extent), | ||
stride_w=int(attrs["stride_w"]), | ||
stride_h=int(attrs["stride_h"]), | ||
dilation_w=int(attrs["dilation_w"]), | ||
dilation_h=int(attrs["dilation_h"]), | ||
) | ||
# Get scale_bias info | ||
scale_bias_mul = compute.b | ||
if isinstance(scale_bias_mul, tvm.tir.Cast): | ||
scale_bias_mul = scale_bias_mul.value | ||
scale_bias_load = scale_bias_mul.a | ||
scale_bias_base = get_base_address(scale_bias_load.index) | ||
serial_scale_bias = SerialAddressRange( | ||
address=tvm.tir.Load("uint8", scale_bias_load.buffer_var, scale_bias_base), | ||
length=SCALE_BIAS_LENGTH * serial_ofm[3], | ||
) | ||
# Get weight info | ||
weight_load = compute.a.b | ||
weight_base = get_base_address(weight_load.index) | ||
serial_weight = SerialAddressRange( | ||
address=tvm.tir.Load("uint8", weight_load.buffer_var, weight_base), | ||
length=serial_ofm[3] * serial_kernel[0] * serial_kernel[1] * rc.extent, | ||
) | ||
# Get activation info | ||
serial_activation = SerialActivation( | ||
op=attrs["activation"], clip_min=attrs["clip_min"], clip_max=attrs["clip_max"] | ||
) | ||
return ( | ||
Serial2DConvolution( | ||
ifm=serial_ifm, | ||
ofm=serial_ofm, | ||
kernel=serial_kernel, | ||
weight=serial_weight, | ||
weight_zero_point=attrs["weight_zero_point"], | ||
scale_bias=serial_scale_bias, | ||
padding=serial_padding, | ||
activation=serial_activation, | ||
upscale="NONE", | ||
), | ||
output_pointer, | ||
replace_pointer, | ||
) |
Oops, something went wrong.