Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Parallelize cumsum in get_valid_counts #7123

Merged
merged 6 commits into from
Dec 31, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
134 changes: 101 additions & 33 deletions python/tvm/topi/cuda/nms.py
Original file line number Diff line number Diff line change
Expand Up @@ -95,7 +95,7 @@ def get_valid_boxes_ir(data, valid_boxes, score_threshold, id_index, score_index
max_threads = int(tvm.target.Target.current(allow_none=False).max_num_threads)
with ib.new_scope():
nthread_tx = max_threads
nthread_bx = num_anchors // max_threads + 1
nthread_bx = ceil_div(num_anchors, max_threads)
nthread_by = batch_size
tx = te.thread_axis("threadIdx.x")
bx = te.thread_axis("blockIdx.x")
Expand Down Expand Up @@ -151,31 +151,103 @@ def get_valid_indices_ir(valid_boxes, valid_count, valid_indices):
valid_indices = ib.buffer_ptr(valid_indices)

max_threads = int(tvm.target.Target.current(allow_none=False).max_num_threads)

# Copy boxes to valid_indices
with ib.new_scope():
nthread_tx = max_threads
nthread_bx = batch_size // max_threads + 1
nthread_bx = ceil_div(num_anchors, max_threads)
nthread_by = batch_size
tx = te.thread_axis("threadIdx.x")
bx = te.thread_axis("blockIdx.x")
by = te.thread_axis("blockIdx.y")
ib.scope_attr(tx, "thread_extent", nthread_tx)
ib.scope_attr(bx, "thread_extent", nthread_bx)
tid = bx * max_threads + tx
# TODO(mbrookhart): Parallelize the sum and cumsum here
current_index = ib.allocate("int32", (1,), name="current_index", scope="local")
with ib.if_scope(tid < batch_size):
current_index[0] = 0
valid_count[tid] = 0
with ib.for_range(0, num_anchors) as j:
idx = tid * num_anchors + j
valid_count[tid] = valid_count[tid] + valid_boxes[idx]
with ib.if_scope(valid_boxes[idx] == 1):
valid_indices[idx] = current_index[0]
current_index[0] = current_index[0] + 1
with ib.else_scope():
valid_indices[idx] = -1
ib.scope_attr(by, "thread_extent", nthread_by)
tid = bx * nthread_tx + tx
with ib.if_scope(tid < num_anchors):
valid_indices[by, tid] = valid_boxes[by, tid]

nthread_tx = max_threads
nthread_bx = ceil_div(num_anchors, max_threads)
nthread_by = batch_size

## The following algorithm performs parallel exclusive scan to get
## a tensor that can later be used to select valid indices
# Up Sweep of exclusive scan
lim = tvm.tir.generic.cast(
tvm.tir.ceil(tvm.tir.log2(tvm.tir.generic.cast(num_anchors, "float64"))), "int64"
)
with ib.for_range(0, lim, dtype="int64") as l2_width:
width = 2 << l2_width

with ib.new_scope():
tx = te.thread_axis("threadIdx.x")
bx = te.thread_axis("blockIdx.x")
ib.scope_attr(tx, "thread_extent", nthread_tx)
ib.scope_attr(
bx,
"thread_extent",
tvm.tir.generic.cast(ceil_div(num_anchors, max_threads * width), "int32"),
)
tid = bx * nthread_tx + tx

by = te.thread_axis("blockIdx.y")
ib.scope_attr(by, "thread_extent", nthread_by)
start = ib.allocate("int64", (1,), name="start", scope="local")
middle = ib.allocate("int64", (1,), name="middle", scope="local")
end = ib.allocate("int64", (1,), name="end", scope="local")
start[0] = width * tid
with ib.if_scope(start[0] < num_anchors):
middle[0] = start[0] + tvm.tir.indexdiv(width, 2)
end[0] = tvm.te.min(start[0] + width, num_anchors)
with ib.if_scope(middle[0] < num_anchors):
valid_indices[by * num_anchors + end[0] - 1] += valid_indices[
by * num_anchors + middle[0] - 1
]

# Down Sweep of exclusive scan
with ib.new_scope():
bx = te.thread_axis("blockIdx.x")
ib.scope_attr(bx, "thread_extent", batch_size)
with ib.if_scope(bx < batch_size):
valid_count[bx] = valid_indices[(bx + 1) * num_anchors - 1]
valid_indices[(bx + 1) * num_anchors - 1] = 0
mbrookhart marked this conversation as resolved.
Show resolved Hide resolved

with ib.for_range(0, lim, dtype="int64") as l2_width:
width = 2 << (lim - l2_width - 1)

with ib.new_scope():
tx = te.thread_axis("threadIdx.x")
bx = te.thread_axis("blockIdx.x")
ib.scope_attr(tx, "thread_extent", nthread_tx)
ib.scope_attr(
bx,
"thread_extent",
tvm.tir.generic.cast(ceil_div(num_anchors, max_threads * width), "int32"),
)
tid = bx * nthread_tx + tx

by = te.thread_axis("blockIdx.y")
ib.scope_attr(by, "thread_extent", nthread_by)
start = ib.allocate("int64", (1,), name="start", scope="local")
middle = ib.allocate("int64", (1,), name="middle", scope="local")
end = ib.allocate("int64", (1,), name="end", scope="local")
tmp = ib.allocate("int32", (1,), name="end", scope="local")
start[0] = width * tid
with ib.if_scope(tvm.tir.all(start[0] < num_anchors)):
middle[0] = start[0] + tvm.tir.indexdiv(width, 2)
end[0] = tvm.tir.min(start[0] + width, num_anchors)
with ib.if_scope(middle[0] < num_anchors):
tmp[0] = valid_indices[by * num_anchors + middle[0] - 1]
valid_indices[by * num_anchors + middle[0] - 1] = valid_indices[
by * num_anchors + end[0] - 1
]
valid_indices[by * num_anchors + end[0] - 1] += tmp[0]

return ib.get()


def get_valid_counts_ir(data, valid_indices, out, out_indices):
def get_valid_counts_ir(data, valid_indices, valid_boxes, out, out_indices):
"""Low level IR to get valid count of bounding boxes
given a score threshold. Also prepares to move valid boxes to the
top of input data.
Expand Down Expand Up @@ -203,8 +275,9 @@ def get_valid_counts_ir(data, valid_indices, out, out_indices):
ib = tvm.tir.ir_builder.create()

data = ib.buffer_ptr(data)

valid_indices = ib.buffer_ptr(valid_indices)
valid_boxes = ib.buffer_ptr(valid_boxes)

out = ib.buffer_ptr(out)
out_indices = ib.buffer_ptr(out_indices)
one = tvm.tir.const(1, dtype=out.dtype)
Expand All @@ -213,41 +286,36 @@ def get_valid_counts_ir(data, valid_indices, out, out_indices):
nthread_tx = max_threads
nthread_bx = num_anchors // max_threads + 1
nthread_by = batch_size
nthread_bz = elem_length
with ib.new_scope():
tx = te.thread_axis("threadIdx.x")
bx = te.thread_axis("blockIdx.x")
by = te.thread_axis("blockIdx.y")
bz = te.thread_axis("blockIdx.z")
ib.scope_attr(tx, "thread_extent", nthread_tx)
ib.scope_attr(bx, "thread_extent", nthread_bx)
ib.scope_attr(by, "thread_extent", nthread_by)
ib.scope_attr(bz, "thread_extent", nthread_bz)
tid = bx * max_threads + tx
with ib.if_scope(tid < num_anchors):
i = by
j = tid
k = bz
out[(i * num_anchors + j) * elem_length + k] = -one
with ib.for_range(0, elem_length) as k:
out[(i * num_anchors + j) * elem_length + k] = -one
out_indices[i * num_anchors + j] = -1
with ib.new_scope():
tx = te.thread_axis("threadIdx.x")
bx = te.thread_axis("blockIdx.x")
by = te.thread_axis("blockIdx.y")
bz = te.thread_axis("blockIdx.z")
ib.scope_attr(tx, "thread_extent", nthread_tx)
ib.scope_attr(bx, "thread_extent", nthread_bx)
ib.scope_attr(by, "thread_extent", nthread_by)
ib.scope_attr(bz, "thread_extent", nthread_bz)
tid = bx * max_threads + tx
with ib.if_scope(tid < num_anchors):
i = by
j = tid
k = bz
with ib.if_scope(valid_indices[i, tid] >= 0):
out[(i * num_anchors + valid_indices[i, tid]) * elem_length + k] = data[
(i * num_anchors + j) * elem_length + k
]
with ib.if_scope(valid_boxes[i, tid] > 0):
with ib.for_range(0, elem_length) as k:
out[(i * num_anchors + valid_indices[i, tid]) * elem_length + k] = data[
(i * num_anchors + j) * elem_length + k
]
out_indices[i * num_anchors + valid_indices[i, tid]] = j
return ib.get()

Expand Down Expand Up @@ -321,10 +389,10 @@ def get_valid_counts(data, score_threshold=0, id_index=0, score_index=1):

out, out_indices = te.extern(
[data.shape, (batch_size, num_anchors)],
[data, valid_indices],
lambda ins, outs: get_valid_counts_ir(ins[0], ins[1], outs[0], outs[1]),
[data, valid_indices, valid_boxes],
lambda ins, outs: get_valid_counts_ir(ins[0], ins[1], ins[2], outs[0], outs[1]),
dtype=["int32", data.dtype],
in_buffers=[data_buf, valid_indices_buf],
in_buffers=[data_buf, valid_indices_buf, valid_boxes_buf],
out_buffers=[out_buf, out_indices_buf],
name="get_valid_counts",
tag="get_valid_counts_gpu",
Expand Down
2 changes: 1 addition & 1 deletion python/tvm/topi/vision/nms.py
Original file line number Diff line number Diff line change
Expand Up @@ -213,7 +213,7 @@ def get_valid_counts(data, score_threshold=0, id_index=0, score_index=1):
out_indices: tvm.te.Tensor or numpy NDArray
Related index in input data.
"""
if isinstance(score_threshold, float):
if isinstance(score_threshold, (float, int)):
masahi marked this conversation as resolved.
Show resolved Hide resolved
score_threshold = tvm.tir.const(score_threshold, dtype=data.dtype)
id_index_const = tvm.tir.const(id_index, "int32")
score_index_const = tvm.tir.const(score_index, "int32")
Expand Down
4 changes: 1 addition & 3 deletions tests/python/relay/test_op_level5.py
Original file line number Diff line number Diff line change
Expand Up @@ -313,10 +313,8 @@ def verify_get_valid_counts(dshape, score_threshold, id_index, score_index):
for target, ctx in tvm.testing.enabled_targets():
intrp = relay.create_executor("debug", ctx=ctx, target=target)
out = intrp.evaluate(func)(np_data)

tvm.testing.assert_allclose(out[0].asnumpy(), np_out1, rtol=1e-3, atol=1e-04)
# get_valid_count for opencl doesn't do data rearrangement
if target in ["opencl"]:
return
tvm.testing.assert_allclose(out[1].asnumpy(), np_out2, rtol=1e-3, atol=1e-04)
tvm.testing.assert_allclose(out[2].asnumpy(), np_out3, rtol=1e-3, atol=1e-04)

Expand Down
21 changes: 6 additions & 15 deletions tests/python/topi/python/test_topi_vision.py
Original file line number Diff line number Diff line change
Expand Up @@ -105,27 +105,18 @@ def check_device(device):
tvm_out1 = tvm.nd.array(np.zeros(np_out1.shape, dtype="int32"), ctx)
tvm_out2 = tvm.nd.array(np.zeros(np_out2.shape, dtype=dtype), ctx)
tvm_out3 = tvm.nd.array(np.zeros(np_out3.shape, dtype="int32"), ctx)
if device == "llvm":
f = tvm.build(s, [data, outs[0], outs[1], outs[2]], device)
f(tvm_input_data, tvm_out1, tvm_out2, tvm_out3)
tvm.testing.assert_allclose(tvm_out1.asnumpy(), np_out1, rtol=1e-3)
tvm.testing.assert_allclose(tvm_out2.asnumpy(), np_out2, rtol=1e-3)
tvm.testing.assert_allclose(tvm_out3.asnumpy(), np_out3, rtol=1e-3)
else:
f = tvm.build(s, [data, outs[0], outs[1]], device)
f(tvm_input_data, tvm_out1, tvm_out2)
tvm.testing.assert_allclose(tvm_out1.asnumpy(), np_out1, rtol=1e-3)
tvm.testing.assert_allclose(tvm_out2.asnumpy(), np_out2, rtol=1e-3)

f = tvm.build(s, [data, outs[0], outs[1], outs[2]], device)
f(tvm_input_data, tvm_out1, tvm_out2, tvm_out3)
tvm.testing.assert_allclose(tvm_out1.asnumpy(), np_out1, rtol=1e-3)
tvm.testing.assert_allclose(tvm_out2.asnumpy(), np_out2, rtol=1e-3)
tvm.testing.assert_allclose(tvm_out3.asnumpy(), np_out3, rtol=1e-3)

for device in ["llvm", "cuda", "opencl"]:
check_device(device)


@tvm.testing.uses_gpu
@pytest.mark.skip(
"Skip this test as it is intermittent."
"See https://github.com/apache/tvm/pull/4901#issuecomment-595040094"
)
def test_get_valid_counts():
verify_get_valid_counts((1, 1000, 5), 0.5, -1, 0)
verify_get_valid_counts((1, 2500, 6), 0, 0, 1)
Expand Down