Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Relay to onnx conversion fixes][Pool, Pad] #8435

Merged
merged 2 commits into from
Jul 12, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 11 additions & 6 deletions python/tvm/contrib/target/onnx.py
Original file line number Diff line number Diff line change
Expand Up @@ -147,6 +147,7 @@ def convert_attributes(cls, attrs):
"pads": attrs.get_int_tuple("padding"),
"strides": attrs.get_int_tuple("strides"),
"kernel_shape": attrs.get_int_tuple("pool_size"),
"ceil_mode": 1 if attrs.ceil_mode else 0,
}


Expand Down Expand Up @@ -330,7 +331,10 @@ def convert_attributes(cls, attrs):
after.append(axis_pads[1])
pads = before + after
pads = numpy.asarray(pads, dtype=pads[0].dtype)
return {"pads": pads, "mode": attrs.get_str("pad_mode"), "constant_value": attrs.pad_value}
return {
"pads": pads,
"mode": attrs.get_str("pad_mode"),
}

@classmethod
def convert(cls, node_entry, model_container, node_dict):
Expand All @@ -341,16 +345,17 @@ def convert(cls, node_entry, model_container, node_dict):
attrs = cls.convert_attributes(node_entry["relay_node"].attrs)

name = node_entry["name"]
data = numpy.asarray(attrs["pads"], dtype=attrs["pads"][0].dtype).astype(numpy.int64)
value = numpy.dtype(node_entry["types"][0].dtype).type(attrs["constant_value"])
pad_data = numpy.asarray(attrs["pads"], dtype=attrs["pads"][0].dtype).astype(numpy.int64)

input_names = [
node_entry["input_names"][0],
add_input(data, name, "pads", model_container),
add_input(value, name, "value", model_container),
add_input(pad_data, name, "pads", model_container),
node_entry["input_names"][1],
]

node = onnx.helper.make_node(cls.__name__, input_names, node_entry["output_names"])
node = onnx.helper.make_node(
cls.__name__, input_names, node_entry["output_names"], mode=attrs["mode"]
)
model_container.add_nodes([node])


Expand Down
17 changes: 10 additions & 7 deletions tests/python/contrib/test_onnx.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,7 @@
import tvm
from tvm import relay
from tvm.contrib.target.onnx import to_onnx
from tvm.relay.testing import run_infer_type


def func_to_onnx(func, name):
Expand Down Expand Up @@ -270,14 +271,16 @@ def verify_batch_norm(axis=1):


def test_pad():
"""Pad unit test."""

def verify_pad():
for dtype in ["float16", "float32"]:
dshape = (4, 10, 7, 7)
x = relay.var("x", shape=dshape, dtype=dtype)
y = relay.nn.pad(x, ((1, 1), (2, 2), (3, 3), (4, 4)))
func = relay.Function([x], y)
x_data = np.random.uniform(size=dshape).astype(dtype)
verify_results(func, [x_data], "test_pad", rtol=1e-5, atol=1e-5)
dshape = (4, 10, 7, 7)
x = relay.var("x", shape=dshape, dtype="int32")
y = relay.nn.pad(x, ((1, 1), (2, 2), (3, 3), (4, 4)))
func = relay.Function([x], y)
func = run_infer_type(func)
x_data = np.random.randint(low=-255, high=255, size=dshape).astype(np.int32)
verify_results(func, [x_data], "test_pad", rtol=1e-5, atol=1e-5)

verify_pad()

Expand Down