This repository has been archived by the owner on Apr 19, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 6
/
table.go
323 lines (298 loc) · 8.96 KB
/
table.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
// Copyright 2016 The aquachain Authors
// This file is part of the aquachain library.
//
// The aquachain library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The aquachain library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the aquachain library. If not, see <http://www.gnu.org/licenses/>.
// Package discv5 implements the RLPx v5 Topic Discovery Protocol.
//
// The Topic Discovery protocol provides a way to find RLPx nodes that
// can be connected to. It uses a Kademlia-like protocol to maintain a
// distributed database of the IDs and endpoints of all listening
// nodes.
package discv5
import (
"crypto/rand"
"encoding/binary"
"fmt"
"net"
"sort"
"gitlab.com/aquachain/aquachain/common"
)
const (
alpha = 3 // Kademlia concurrency factor
bucketSize = 16 // Kademlia bucket size
hashBits = len(common.Hash{}) * 8
nBuckets = hashBits + 1 // Number of buckets
maxBondingPingPongs = 16
maxFindnodeFailures = 5
)
type Table struct {
count int // number of nodes
buckets [nBuckets]*bucket // index of known nodes by distance
nodeAddedHook func(*Node) // for testing
self *Node // metadata of the local node
}
// bucket contains nodes, ordered by their last activity. the entry
// that was most recently active is the first element in entries.
type bucket struct {
entries []*Node
replacements []*Node
}
func newTable(ourID NodeID, ourAddr *net.UDPAddr) *Table {
self := NewNode(ourID, ourAddr.IP, uint16(ourAddr.Port), uint16(ourAddr.Port))
tab := &Table{self: self}
for i := range tab.buckets {
tab.buckets[i] = new(bucket)
}
return tab
}
const printTable = false
// chooseBucketRefreshTarget selects random refresh targets to keep all Kademlia
// buckets filled with live connections and keep the network topology healthy.
// This requires selecting addresses closer to our own with a higher probability
// in order to refresh closer buckets too.
//
// This algorithm approximates the distance distribution of existing nodes in the
// table by selecting a random node from the table and selecting a target address
// with a distance less than twice of that of the selected node.
// This algorithm will be improved later to specifically target the least recently
// used buckets.
func (tab *Table) chooseBucketRefreshTarget() common.Hash {
entries := 0
if printTable {
fmt.Println()
}
for i, b := range tab.buckets {
entries += len(b.entries)
if printTable {
for _, e := range b.entries {
fmt.Println(i, e.state, e.addr().String(), e.ID.String(), e.sha.Hex())
}
}
}
prefix := binary.BigEndian.Uint64(tab.self.sha[0:8])
dist := ^uint64(0)
entry := int(randUint(uint32(entries + 1)))
for _, b := range tab.buckets {
if entry < len(b.entries) {
n := b.entries[entry]
dist = binary.BigEndian.Uint64(n.sha[0:8]) ^ prefix
break
}
entry -= len(b.entries)
}
ddist := ^uint64(0)
if dist+dist > dist {
ddist = dist
}
targetPrefix := prefix ^ randUint64n(ddist)
var target common.Hash
binary.BigEndian.PutUint64(target[0:8], targetPrefix)
rand.Read(target[8:])
return target
}
// readRandomNodes fills the given slice with random nodes from the
// table. It will not write the same node more than once. The nodes in
// the slice are copies and can be modified by the caller.
func (tab *Table) readRandomNodes(buf []*Node) (n int) {
// TODO: tree-based buckets would help here
// Find all non-empty buckets and get a fresh slice of their entries.
var buckets [][]*Node
for _, b := range tab.buckets {
if len(b.entries) > 0 {
buckets = append(buckets, b.entries[:])
}
}
if len(buckets) == 0 {
return 0
}
// Shuffle the buckets.
for i := uint32(len(buckets)) - 1; i > 0; i-- {
j := randUint(i)
buckets[i], buckets[j] = buckets[j], buckets[i]
}
// Move head of each bucket into buf, removing buckets that become empty.
var i, j int
for ; i < len(buf); i, j = i+1, (j+1)%len(buckets) {
b := buckets[j]
buf[i] = &(*b[0])
buckets[j] = b[1:]
if len(b) == 1 {
buckets = append(buckets[:j], buckets[j+1:]...)
}
if len(buckets) == 0 {
break
}
}
return i + 1
}
func randUint(max uint32) uint32 {
if max < 2 {
return 0
}
var b [4]byte
rand.Read(b[:])
return binary.BigEndian.Uint32(b[:]) % max
}
func randUint64n(max uint64) uint64 {
if max < 2 {
return 0
}
var b [8]byte
rand.Read(b[:])
return binary.BigEndian.Uint64(b[:]) % max
}
// closest returns the n nodes in the table that are closest to the
// given id. The caller must hold tab.mutex.
func (tab *Table) closest(target common.Hash, nresults int) *nodesByDistance {
// This is a very wasteful way to find the closest nodes but
// obviously correct. I believe that tree-based buckets would make
// this easier to implement efficiently.
close := &nodesByDistance{target: target}
for _, b := range tab.buckets {
for _, n := range b.entries {
close.push(n, nresults)
}
}
return close
}
// add attempts to add the given node its corresponding bucket. If the
// bucket has space available, adding the node succeeds immediately.
// Otherwise, the node is added to the replacement cache for the bucket.
func (tab *Table) add(n *Node) (contested *Node) {
//fmt.Println("add", n.addr().String(), n.ID.String(), n.sha.Hex())
if n.ID == tab.self.ID {
return
}
b := tab.buckets[logdist(tab.self.sha, n.sha)]
switch {
case b.bump(n):
// n exists in b.
return nil
case len(b.entries) < bucketSize:
// b has space available.
b.addFront(n)
tab.count++
if tab.nodeAddedHook != nil {
tab.nodeAddedHook(n)
}
return nil
default:
// b has no space left, add to replacement cache
// and revalidate the last entry.
// TODO: drop previous node
b.replacements = append(b.replacements, n)
if len(b.replacements) > bucketSize {
copy(b.replacements, b.replacements[1:])
b.replacements = b.replacements[:len(b.replacements)-1]
}
return b.entries[len(b.entries)-1]
}
}
// stuff adds nodes the table to the end of their corresponding bucket
// if the bucket is not full.
func (tab *Table) stuff(nodes []*Node) {
outer:
for _, n := range nodes {
if n.ID == tab.self.ID {
continue // don't add self
}
bucket := tab.buckets[logdist(tab.self.sha, n.sha)]
for i := range bucket.entries {
if bucket.entries[i].ID == n.ID {
continue outer // already in bucket
}
}
if len(bucket.entries) < bucketSize {
bucket.entries = append(bucket.entries, n)
tab.count++
if tab.nodeAddedHook != nil {
tab.nodeAddedHook(n)
}
}
}
}
// delete removes an entry from the node table (used to evacuate
// failed/non-bonded discovery peers).
func (tab *Table) delete(node *Node) {
//fmt.Println("delete", node.addr().String(), node.ID.String(), node.sha.Hex())
bucket := tab.buckets[logdist(tab.self.sha, node.sha)]
for i := range bucket.entries {
if bucket.entries[i].ID == node.ID {
bucket.entries = append(bucket.entries[:i], bucket.entries[i+1:]...)
tab.count--
return
}
}
}
func (tab *Table) deleteReplace(node *Node) {
b := tab.buckets[logdist(tab.self.sha, node.sha)]
i := 0
for i < len(b.entries) {
if b.entries[i].ID == node.ID {
b.entries = append(b.entries[:i], b.entries[i+1:]...)
tab.count--
} else {
i++
}
}
// refill from replacement cache
// TODO: maybe use random index
if len(b.entries) < bucketSize && len(b.replacements) > 0 {
ri := len(b.replacements) - 1
b.addFront(b.replacements[ri])
tab.count++
b.replacements[ri] = nil
b.replacements = b.replacements[:ri]
}
}
func (b *bucket) addFront(n *Node) {
b.entries = append(b.entries, nil)
copy(b.entries[1:], b.entries)
b.entries[0] = n
}
func (b *bucket) bump(n *Node) bool {
for i := range b.entries {
if b.entries[i].ID == n.ID {
// move it to the front
copy(b.entries[1:], b.entries[:i])
b.entries[0] = n
return true
}
}
return false
}
// nodesByDistance is a list of nodes, ordered by
// distance to target.
type nodesByDistance struct {
entries []*Node
target common.Hash
}
// push adds the given node to the list, keeping the total size below maxElems.
func (h *nodesByDistance) push(n *Node, maxElems int) {
ix := sort.Search(len(h.entries), func(i int) bool {
return distcmp(h.target, h.entries[i].sha, n.sha) > 0
})
if len(h.entries) < maxElems {
h.entries = append(h.entries, n)
}
if ix == len(h.entries) {
// farther away than all nodes we already have.
// if there was room for it, the node is now the last element.
} else {
// slide existing entries down to make room
// this will overwrite the entry we just appended.
copy(h.entries[ix+1:], h.entries[ix:])
h.entries[ix] = n
}
}