forked from fieldtrip/fieldtrip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ft_denoise_hfc.m
204 lines (175 loc) · 7.17 KB
/
ft_denoise_hfc.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
function [data] = ft_denoise_hfc(cfg,data)
% FT_DENOISE_HFC implements harmonic field correction, which models external
% interference on the recordings as a harmonic magnetic field. It is particulaly
% useful for MEG data with low channel numbers, such as OPM data.
%
% The homogenous field correction method implements Tierney et al. (2021) NIMG,
% https://doi.org/10.1016/j.neuroimage.2021.118484.
%
% The harmonic expansion method implements Tierney et al. (2022) NIMG,
% https://doi.org/10.1016/j.neuroimage.2022.119338.
%
% Use as
% data = ft_denoise_hfc(cfg,data)
%
% Where cfg is a configuration structure that contains:
% cfg.channel = channels for HFC (default = 'all')
% cfg.order = number, spherical harmonic order (default = 1)
% order = 1 is a homogenous field
% order = 2 includes gradients
% order = 3 includes quadratic terms, etc.
% cfg.trials = which trials do you want to denoise? (default = 'all')
% cfg.updatesens = do you want to update sensor info with projector? (default = 'yes')
% cfg.feedback = do you want feedback (default = 'yes')
% cfg.residualcheck = do you want to check channel residuals (default = 'yes')
% cfg.residualthresh = number in pT, what level of residual signal is fine for quality assurance (default = 50)
%
% See also FT_DENOISE_SYNTHETIC, FT_DENOISE_PCA, FT_DENOISE_DSSP, FT_DENOISE_TSP
% Copyright (C) 2021-22, Tim Tierney, George O'Neill, Robert Seymour, Wellcome Centre for Human Neuroimaging, UCL
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar data
ft_preamble provenance data
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
% do not continue function execution in case the outputfile is present and the user indicated to keep it
return
end
% check the input data
data = ft_checkdata(data, 'datatype', {'raw'}, 'ismeg', 'yes');
% check if the input cfg is valid for this function
cfg = ft_checkconfig(cfg, 'forbidden', {'trial'}); % prevent accidental typos, see issue 1729
cfg = ft_checkconfig(cfg, 'forbidden', {'channels'}); % prevent accidental typos, see issue 1729
% set the defaults
cfg.order = ft_getopt(cfg, 'order', 1);
cfg.channel = ft_getopt(cfg, 'channel', 'all', 1);
cfg.trials = ft_getopt(cfg, 'trials', 'all', 1);
cfg.updatesens = ft_getopt(cfg, 'updatesens', 'yes');
cfg.feedback = ft_getopt(cfg, 'feedback', 'yes');
cfg.residualcheck = ft_getopt(cfg, 'residualcheck', 'yes');
cfg.residualthresh = ft_getopt(cfg, 'residualthresh', 50);
% select trials and channels of interest
tmpcfg = keepfields(cfg, {'trials', 'channel', 'showcallinfo', 'trackcallinfo', 'trackusage', 'trackdatainfo', 'trackmeminfo', 'tracktimeinfo', 'checksize'});
data = ft_selectdata(tmpcfg, data);
% restore the provenance information
[cfg, data] = rollback_provenance(cfg, data);
% Check match between input data chans and grad chans
[sel, dum] = ismember(data.grad.label, data.label);
num_mismatch = sum(sel == 0);
% Warn the user if there are chans in grad not in data
if num_mismatch > 0
ft_notice('Found %d channels in grad structure not present in cfg.channel. These will NOT be used for Harmonic Field Correction', num_mismatch);
end
% Check for Dr. Tim Tierney's OPM toolbox on the path, and add if needed
% See: https://github.com/tierneytim/OPM
ft_hastoolbox('opm', 1);
% generate harmonic basis set
opt = [];
opt.li = cfg.order;
opt.v = data.grad.coilpos(sel,:);
opt.o = data.grad.coilori(sel,:);
N = spm_opm_vslm(opt);
% Make montage for the next step
montage = [];
montage.tra = eye(length(N)) - N*pinv(N);
montage.labelold = data.grad.label(sel);
montage.labelnew = data.grad.label(sel);
montage.chantypeold = data.grad.chantype(sel);
montage.chantypenew = data.grad.chantype(sel);
montage.chanunitold = data.grad.chanunit(sel);
montage.chanunitnew = data.grad.chanunit(sel);
% this is prior to the montage
labelold = data.label;
% apply the montage
data = ft_apply_montage(data, montage, 'keepunused', 'yes');
% Tell the user
ft_info('Applied HFC to the data');
% Update the tra, it is essential to correct the leadfields going forward
if istrue(cfg.updatesens)
data.grad = ft_apply_montage(data.grad, montage, 'keepunused', 'yes', 'balancename', 'hfc','warning',false);
ft_info('Converted the sensor description to HFC');
end
% reorder the channels to stay close to the original ordering
[selold, selnew] = match_str(montage.labelold, data.label);
if numel(selnew)==numel(labelold)
for i=1:numel(data.trial)
data.trial{i} = data.trial{i}(selnew,:);
end
data.label = data.label(selnew);
else
ft_warning('channel ordering might have changed');
end
% Perform running variance check to identify odd channels
if strcmp(cfg.residualcheck, 'yes')
residual_check(cfg.residualthresh, data, montage.labelold)
end
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble previous data
ft_postamble provenance data
ft_postamble history data
ft_postamble savevar data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function residual_check(residualthresh, data, oldlabels)
% find corrected channels in the output data
[selold2, selnew2] = match_str(oldlabels, data.label);
trvar = [];
for ii = 1:numel(data.trial)
tmp = data.trial{ii}(selnew2,:);
Mk = tmp(:,1);
Sk = zeros(size(Mk));
count = 1;
for jj = 1:size(tmp,2)
Xk = tmp(:,jj);
Mkprev = Mk;
Mk = Mkprev +(Xk-Mkprev)/count;
Sk = Sk+(Xk-Mkprev).*(Xk-Mk);
count=count+1;
end
trvar(:,ii) = Sk/(count-1);
end
% Identify the most common chanunit
chanunit = ft_chanunit(data);
[s, i, j] = unique(chanunit);
chanunit = s{mode(j)};
% Express results in pT
scale = ft_scalingfactor(chanunit, 'pT');
SD = mean(sqrt(trvar),2) * scale;
fprintf('Checking for unsual channels post-corrections\n')
count = 0;
for ii = 1:length(SD)
index = selnew2(ii);
if SD(ii) > residualthresh
count = count + 1;
fprintf('Residual on channel %d (%s) = %3.2f pT\n', index, data.label{index}, SD(ii));
end
end
if ~count
fprintf('No unusual channel residuals found!\n')
end