-
Notifications
You must be signed in to change notification settings - Fork 0
/
data_base.py
executable file
·190 lines (143 loc) · 8.98 KB
/
data_base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
from sqlalchemy import *
import time
import numpy as np
from decimal import Decimal
# using bitfinex APIs to get today's_ticker
from bitfinex.client import Client, TradeClient
trade = TradeClient('TlwqyZCq6tcr7kG25WLlPKk1IKvYoRndgr16mQ4qTQh','yPiilMjqCutpEptu7a1etlJmmHMuaru83wa9qqQOlhb')
print trade.balances()
client = Client()
#trade = TradeClient('K4HJultQmdvroWCnNy5OMcXx7QfGoQgZw0vrkWmuV1Y','dFt4tsMFszh2vTGGvHqFEP3fkaaSniJ4zDA4pSWyJOM')
# we are inporting the Databse that is being created by bitfinex-boat
engine = create_engine('sqlite:////home/metal-machine/Desktop/all_ticker.db')
metadata = MetaData(engine)
tickers = Table('ticker', metadata, autoload=True)
def find_nearest(array,value):
""" gets the numpy array and timestamp as input and retunrs the nearest value"""
idx = np.abs(array-value).argmin()
return array[idx]
def ohlc_past(hours):
"""This function returns the seconds as input and retrun the required ohlc_4"""
seconds = 3600*hours # converting hours into seconds
time_delta = float('{:7f}'.format(time.time()-seconds))
time_stamp = tickers.select(tickers.c.timestamp)
timestamp_array = np.array([i[1] for i in time_stamp.execute()])
time_stamp_value = find_nearest(timestamp_array,time_delta)
sql_statement = tickers.select(tickers.c.timestamp==time_stamp_value)
match_list = [i for i in sql_statement.execute()]
ohlc_delta = match_list[0]
#1469192333.2017772, 660.03, 668.0, 660.0
# presently ohlc_delta is returning timedelta[1],lastprice[2],high[3],low[4] ::: now How to get close as well
#return type(ohlc_delta[2])
return (ohlc_delta[2]+ohlc_delta[3]+ohlc_delta[4]+ohlc_delta[2])/4.0
def ohlc4_today(symbol_used):
'''returns open,high,low and close(yet not completed) this function will save in database'''
ticker_data = client.ticker(symbol_used)
today_data = client.today(symbol_used)
return (ticker_data['last_price']+ticker_data['high']+ticker_data['low']+ticker_data['last_price'])/4.0
def ticker_last(symbol_used):
'''returns open,high,low and close(yet not completed) this function will save in database'''
ticker_data = client.ticker(symbol_used)
today_data = client.today(symbol_used)
return ticker_data['last_price']
'''
getDiff() =>
yesterday=security(tickerid, timeframe, ohlc4[1])
today=ohlc4
delta=today-yesterday
percentage=delta/yesterday
'''
def auto_order_buy(amount, price):
order_made = trade.place_order(amount, price, side='buy', ord_type='market', symbol='btcusd', exchange='bitfinex')
return order_made
def auto_order_sell(amount, price):
order_made = trade.place_order(amount, price, side='sell', ord_type='market', symbol='btcusd', exchange='bitfinex')
return order_made
def getDiff(symbol,hours):
delta = ohlc4_today(symbol)-ohlc_past(hours)
return delta/ohlc_past(hours)
'''
PineActivationFunctionLinear(v) => v
PineActivationFunctionTanh(v) => (exp(v) - exp(-v))/(exp(v) + exp(-v))
l0_0 = PineActivationFunctionLinear(getDiff())
l1_0 = PineActivationFunctionTanh(l0_0*0.8446488687)
'''
def main_call():
while True:
try:
l0_0 = getDiff('btcusd',8)
l1_0 = np.tanh(l0_0*0.8446488687)
l1_1 = np.tanh(l0_0*-0.5674069006)
l1_2 = np.tanh(l0_0*0.8676766445)
l1_3 = np.tanh(l0_0*0.5200611473)
l1_4 = np.tanh(l0_0*-0.2215499554)
l2_0 = np.tanh(l1_0*0.3341657935 + l1_1*-2.0060003664 + l1_2*0.8606354375 +l1_3*0.9184846912 + l1_4*-0.8531172267)
l2_1 = np.tanh(l1_0*-0.0394076437 + l1_1*-0.4720374911 + l1_2*0.2900968524 +l1_3*1.0653326022 + l1_4*0.3000188806)
l2_2 = np.tanh(l1_0*-0.559307785 + l1_1*-0.9353655177 + l1_2*1.2133832962 + l1_3*0.1952686024+ l1_4*0.8552068166)
l2_3 = np.tanh(l1_0*-0.4293220754 + l1_1*0.8484259409 + l1_2*-0.7154087313 +l1_3*0.1102971055 + l1_4*0.2279392724)
l2_4 = np.tanh(l1_0*0.9111779155 + l1_1*0.2801691115 + l1_2*0.0039982713 + l1_3*-0.5648257117 + l1_4*0.3281705155)
l2_5 = np.tanh(l1_0*-0.2963954503 + l1_1*0.4046532178 + l1_2*0.2460580977 +l1_3*0.6608675819 + l1_4*-0.8732022547)
l2_6 = np.tanh(l1_0*0.8810811932 + l1_1*0.6903706878 + l1_2*-0.5953059103 + l1_3*-0.3084040686 + l1_4*-0.4038498853)
l2_7 = np.tanh(l1_0*-0.5687101164 + l1_1*0.2736758588 + l1_2*-0.2217360382 +l1_3*0.8742950972 + l1_4*0.2997583987)
l2_8 = np.tanh(l1_0*0.0708459913 + l1_1*0.8221730616 + l1_2*-0.7213265567 + l1_3*-0.3810462836 + l1_4*0.0503867753)
l2_9 = np.tanh(l1_0*0.4880140595 + l1_1*0.9466627196 + l1_2*1.0163097961 + l1_3*-0.9500386514 + l1_4*-0.6341709382)
l2_10 = np.tanh(l1_0*1.3402207103 + l1_1*0.0013395288 + l1_2*3.4813009133 + l1_3*-0.8636814677 + l1_4*41.3171047132)
l2_11 = np.tanh(l1_0*1.2388217292 + l1_1*-0.6520886912 + l1_2*0.3508321737 +l1_3*0.6640560714 + l1_4*1.5936220597)
l2_12 = np.tanh(l1_0*-0.1800525171 + l1_1*-0.2620989752 + l1_2*0.056675277 + l1_3*-0.5045395315 + l1_4*0.2732553554)
l2_13 = np.tanh(l1_0*-0.7776331454 + l1_1*0.1895231137 + l1_2*0.5384918862 +l1_3*0.093711904 + l1_4*-0.3725627758)
l2_14 = np.tanh(l1_0*-0.3181583022 + l1_1*0.2467979854 + l1_2*0.4341718676 + l1_3*-0.7277619935 + l1_4*0.1799381758)
l2_15 = np.tanh(l1_0*-0.5558227731 + l1_1*0.3666152536 + l1_2*0.1538243225 + l1_3*-0.8915928174 + l1_4*-0.7659355684)
l2_16 = np.tanh(l1_0*0.6111516061 + l1_1*-0.5459495224 + l1_2*-0.5724238425 + l1_3*-0.8553500765 + l1_4*-0.8696190472)
l2_17 = np.tanh(l1_0*0.6843667454 + l1_1*0.408652181 + l1_2*-0.8830470112 + l1_3*-0.8602324935 + l1_4*0.1135462621)
l2_18 = np.tanh(l1_0*-0.1569048216 + l1_1*-1.4643247888 + l1_2*0.5557152813 +l1_3*1.0482791924 + l1_4*1.4523116833)
l2_19 = np.tanh(l1_0*0.5207514017 + l1_1*-0.2734444192 + l1_2*-0.3328660936 + l1_3*-0.7941515963 + l1_4*-0.3536051491)
l2_20 = np.tanh(l1_0*-0.4097807954 + l1_1*0.3198619826 + l1_2*0.461681627 + l1_3*-0.1135575498 + l1_4*0.7103339851)
l2_21 = np.tanh(l1_0*-0.8725014237 + l1_1*-1.0312091401 + l1_2*0.2267643037 + l1_3*-0.6814258121 + l1_4*0.7524828703)
l2_22 = np.tanh(l1_0*-0.3986855003 + l1_1*0.4962556631 + l1_2*-0.7330224516 +l1_3*0.7355772164 + l1_4*0.3180141739)
l2_23 = np.tanh(l1_0*-1.083080442 + l1_1*1.8752543187 + l1_2*0.3623326265 + l1_3*-0.348145191+ l1_4*0.1977935038)
l2_24 = np.tanh(l1_0*-0.0291290625 + l1_1*0.0612906199 + l1_2*0.1219696687 + l1_3*-1.0273685429 + l1_4*0.0872219768)
l2_25 = np.tanh(l1_0*0.931791094 + l1_1*-0.313753684 + l1_2*-0.3028724837 + l1_3*0.7387076712+ l1_4*0.3806140391)
l2_26 = np.tanh(l1_0*0.2630619402 + l1_1*-1.9827996702 + l1_2*-0.7741413496 +l1_3*0.1262957444 + l1_4*0.2248777886)
l2_27 = np.tanh(l1_0*-0.2666322362 + l1_1*-1.124654664 + l1_2*0.7288282621 + l1_3*-0.1384289204 + l1_4*0.2395966188)
l2_28 = np.tanh(l1_0*0.6611845175 + l1_1*0.0466048937 + l1_2*-0.1980999993 +l1_3*0.8152350927 + l1_4*0.0032723211)
l2_29 = np.tanh(l1_0*-0.3150344751 + l1_1*0.1391754608 + l1_2*0.5462816249 + l1_3*-0.7952302364 + l1_4*-0.7520712378)
l2_30 = np.tanh(l1_0*-0.0576916066 + l1_1*0.3678415302 + l1_2*0.6802537378 +l1_3*1.1437036331 + l1_4*-0.8637405666)
l2_31 = np.tanh(l1_0*0.7016273068 + l1_1*0.3978601709 + l1_2*0.3157049654 + l1_3*-0.2528455662 + l1_4*-0.8614146703)
l2_32 = np.tanh(l1_0*1.1741126834 + l1_1*-1.4046408959 + l1_2*1.2914477803 +l1_3*0.9904052964 + l1_4*-0.6980155826)
l3_0 = np.tanh(l2_0*-0.1366382003 + l2_1*0.8161960822 + l2_2*-0.9458773183 + \
l2_3*0.4692969576 + l2_4*0.0126710629 + l2_5*-0.0403001012 + l2_6*-0.0116244898 + l2_7*-0.4874816289 + l2_8*\
-0.6392241448 + l2_9*-0.410338398 + l2_10*-0.1181027081 + l2_11*0.1075562037 + l2_12*-0.5948728252 \
+l2_13*0.5593677345 + l2_14*-0.3642935247 + l2_15*-0.2867603217 + l2_16*0.142250271 + l2_17*-0.0535698019 \
+l2_18*-0.034007685 + l2_19*-0.3594532426 + l2_20*0.2551095195 + l2_21*0.4214344983 + l2_22*0.8941621336 \
+l2_23*0.6283377368 + l2_24*-0.7138020667 + l2_25*-0.1426738249 + l2_26*0.172671223 + l2_27*0.0714824385 \
+l2_28*-0.3268182144 + l2_29*-0.0078989755 + l2_30*-0.2032828145 + l2_31*-0.0260631534 + l2_32*0.4918037012)
if(l3_0>0):
#do whatever you did a candlestick ago? how to sort out this one?
print l3_0
elif(l3_0<0):
print l3_0
else:
pass
except KeyboardInterrupt:
raise
exit()
print main_call()
'''
if(l3_0>0):
#do whatever you did a candlestick ago? how to sort out this one?
print l3_0
print auto_order_buy('0.01',str(ticker_last('btcusd')))
elif(l3_0<0):
print l3_0
print auto_order_sell('0.01',str(ticker_last('btcusd')))
else:
pass
main_call()
'''
'''
l3_0
def auto_order(amount, price):
If l3_0 is more than 0, try to buy
If l3_0 is less than 0, try to sell
if l3_0 is neither (in other words, it is 0),
'''