forked from fastai/fastai
-
Notifications
You must be signed in to change notification settings - Fork 0
/
vision.html
671 lines (509 loc) · 61.3 KB
/
vision.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
---
title: vision
keywords: fastai
sidebar: home_sidebar
summary: "Application to Computer Vision"
---
<!--
#################################################
### THIS FILE WAS AUTOGENERATED! DO NOT EDIT! ###
#################################################
# file to edit: docs_src/vision.ipynb
# instructions: https://docs.fast.ai/gen_doc_main.html
-->
<div class="container" id="notebook-container">
<div class="cell border-box-sizing text_cell rendered"><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Computer-vision">Computer vision<a class="anchor-link" href="#Computer-vision">¶</a></h2>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>The <a href="/vision.html#vision"><code>vision</code></a> module of the fastai library contains all the necessary functions to define a Dataset and train a model for computer vision tasks. It contains four different submodules to reach that goal:</p>
<ul>
<li><a href="/vision.image.html#vision.image"><code>vision.image</code></a> contains the basic definition of an <a href="/vision.image.html#Image"><code>Image</code></a> object and all the functions that are used behind the scenes to apply transformations to such an object.</li>
<li><a href="/vision.transform.html#vision.transform"><code>vision.transform</code></a> contains all the transforms we can use for data augmentation.</li>
<li><a href="/vision.data.html#vision.data"><code>vision.data</code></a> contains the definition of <a href="/vision.data.html#ImageDataBunch"><code>ImageDataBunch</code></a> as well as the utility function to easily build a <a href="/basic_data.html#DataBunch"><code>DataBunch</code></a> for Computer Vision problems.</li>
<li><a href="/vision.learner.html#vision.learner"><code>vision.learner</code></a> lets you build and fine-tune models with a pretrained CNN backbone or train a randomly initialized model from scratch.</li>
</ul>
<p>Each of the four module links above includes a quick overview and examples of the functionality of that module, as well as complete API documentation. Below, we'll provide a walk-thru of end to end computer vision model training with the most commonly used functionality.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Minimal-training-example">Minimal training example<a class="anchor-link" href="#Minimal-training-example">¶</a></h2>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>First, import everything you need from the fastai library.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">from</span> <span class="nn">fastai.vision</span> <span class="k">import</span> <span class="o">*</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>First, create a data folder containing a MNIST subset in <code>data/mnist_sample</code> using this little helper that will download it for you:</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">path</span> <span class="o">=</span> <span class="n">untar_data</span><span class="p">(</span><span class="n">URLs</span><span class="o">.</span><span class="n">MNIST_SAMPLE</span><span class="p">)</span>
<span class="n">path</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="output_text output_subarea output_execute_result">
<pre>PosixPath('/home/ubuntu/.fastai/data/mnist_sample')</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>Since this contains standard <a href="/train.html#train"><code>train</code></a> and <code>valid</code> folders, and each contains one folder per class, you can create a <a href="/basic_data.html#DataBunch"><code>DataBunch</code></a> in a single line:</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">data</span> <span class="o">=</span> <span class="n">ImageDataBunch</span><span class="o">.</span><span class="n">from_folder</span><span class="p">(</span><span class="n">path</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>You load a pretrained model (from <a href="/vision.models.html#vision.models"><code>vision.models</code></a>) ready for fine tuning:</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">learn</span> <span class="o">=</span> <span class="n">cnn_learner</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">models</span><span class="o">.</span><span class="n">resnet18</span><span class="p">,</span> <span class="n">metrics</span><span class="o">=</span><span class="n">accuracy</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>And now you're ready to train!</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">learn</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="output_html rendered_html output_subarea ">
Total time: 00:09 <p><table style='width:300px; margin-bottom:10px'>
<tr>
<th>epoch</th>
<th>train_loss</th>
<th>valid_loss</th>
<th>accuracy</th>
</tr>
<tr>
<th>1</th>
<th>0.140444</th>
<th>0.097685</th>
<th>0.968597</th>
</tr>
</table>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>Let's look briefly at each of the <a href="/vision.html#vision"><code>vision</code></a> submodules.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Getting-the-data">Getting the data<a class="anchor-link" href="#Getting-the-data">¶</a></h2>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>The most important piece of <a href="/vision.data.html#vision.data"><code>vision.data</code></a> for classification is the <a href="/vision.data.html#ImageDataBunch"><code>ImageDataBunch</code></a>. If you've got labels as subfolders, then you can just say:</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">data</span> <span class="o">=</span> <span class="n">ImageDataBunch</span><span class="o">.</span><span class="n">from_folder</span><span class="p">(</span><span class="n">path</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>It will grab the data in a train and validation sets from subfolders of classes. You can then access that training and validation set by grabbing the corresponding attribute in <a href="/vision.data.html#vision.data"><code>data</code></a>.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">ds</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="n">train_ds</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Images">Images<a class="anchor-link" href="#Images">¶</a></h2>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>That brings us to <a href="/vision.image.html#vision.image"><code>vision.image</code></a>, which defines the <a href="/vision.image.html#Image"><code>Image</code></a> class. Our dataset will return <a href="/vision.image.html#Image"><code>Image</code></a> objects when we index it. Images automatically display in notebooks:</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">img</span><span class="p">,</span><span class="n">label</span> <span class="o">=</span> <span class="n">ds</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="n">img</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="output_png output_subarea output_execute_result">
<img src="
"
>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>You can change the way they're displayed:</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">img</span><span class="o">.</span><span class="n">show</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">),</span> <span class="n">title</span><span class="o">=</span><span class="s1">'MNIST digit'</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="output_png output_subarea ">
<img src="
"
>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>And you can transform them in various ways:</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">img</span><span class="o">.</span><span class="n">rotate</span><span class="p">(</span><span class="mi">35</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="output_png output_subarea output_execute_result">
<img src="
"
>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Data-augmentation">Data augmentation<a class="anchor-link" href="#Data-augmentation">¶</a></h2>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p><a href="/vision.transform.html#vision.transform"><code>vision.transform</code></a> lets us do data augmentation. Simplest is to choose from a standard set of transforms, where the defaults are designed for photos:</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">help</span><span class="p">(</span><span class="n">get_transforms</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="output_subarea output_stream output_stdout output_text">
<pre>Help on function get_transforms in module fastai.vision.transform:
get_transforms(do_flip: bool = True, flip_vert: bool = False, max_rotate: float = 10.0, max_zoom: float = 1.1, max_lighting: float = 0.2, max_warp: float = 0.2, p_affine: float = 0.75, p_lighting: float = 0.75, xtra_tfms: Union[Collection[fastai.vision.image.Transform], NoneType] = None) -> Collection[fastai.vision.image.Transform]
Utility func to easily create a list of flip, rotate, `zoom`, warp, lighting transforms.
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>...or create the exact list you want:</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">tfms</span> <span class="o">=</span> <span class="p">[</span><span class="n">rotate</span><span class="p">(</span><span class="n">degrees</span><span class="o">=</span><span class="p">(</span><span class="o">-</span><span class="mi">20</span><span class="p">,</span><span class="mi">20</span><span class="p">)),</span> <span class="n">symmetric_warp</span><span class="p">(</span><span class="n">magnitude</span><span class="o">=</span><span class="p">(</span><span class="o">-</span><span class="mf">0.3</span><span class="p">,</span><span class="mf">0.3</span><span class="p">))]</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>You can apply these transforms to your images by using their <code>apply_tfms</code> method.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">fig</span><span class="p">,</span><span class="n">axes</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span><span class="mi">4</span><span class="p">,</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">8</span><span class="p">,</span><span class="mi">2</span><span class="p">))</span>
<span class="k">for</span> <span class="n">ax</span> <span class="ow">in</span> <span class="n">axes</span><span class="p">:</span> <span class="n">ds</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">apply_tfms</span><span class="p">(</span><span class="n">tfms</span><span class="p">)</span><span class="o">.</span><span class="n">show</span><span class="p">(</span><span class="n">ax</span><span class="o">=</span><span class="n">ax</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="output_png output_subarea ">
<img src="
"
>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>You can create a <a href="/basic_data.html#DataBunch"><code>DataBunch</code></a> with your transformed training and validation data loaders in a single step, passing in a tuple of <em>(train_tfms, valid_tfms)</em>:</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">data</span> <span class="o">=</span> <span class="n">ImageDataBunch</span><span class="o">.</span><span class="n">from_folder</span><span class="p">(</span><span class="n">path</span><span class="p">,</span> <span class="n">ds_tfms</span><span class="o">=</span><span class="p">(</span><span class="n">tfms</span><span class="p">,</span> <span class="p">[]))</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Training-and-interpretation">Training and interpretation<a class="anchor-link" href="#Training-and-interpretation">¶</a></h2>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>Now you're ready to train a model. To create a model, simply pass your <a href="/basic_data.html#DataBunch"><code>DataBunch</code></a> and a model creation function (such as one provided by <a href="/vision.models.html#vision.models"><code>vision.models</code></a> or <a href="https://pytorch.org/docs/stable/torchvision/models.html#torchvision-models"><code>torchvision.models</code></a>) to <a href="/vision.learner.html#cnn_learner"><code>cnn_learner</code></a>, and call <a href="/basic_train.html#fit"><code>fit</code></a>:</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">learn</span> <span class="o">=</span> <span class="n">cnn_learner</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">models</span><span class="o">.</span><span class="n">resnet18</span><span class="p">,</span> <span class="n">metrics</span><span class="o">=</span><span class="n">accuracy</span><span class="p">)</span>
<span class="n">learn</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="output_html rendered_html output_subarea ">
Total time: 00:08 <p><table style='width:300px; margin-bottom:10px'>
<tr>
<th>epoch</th>
<th>train_loss</th>
<th>valid_loss</th>
<th>accuracy</th>
</tr>
<tr>
<th>1</th>
<th>0.194779</th>
<th>0.131709</th>
<th>0.950932</th>
</tr>
</table>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>Now we can take a look at the most incorrect images, and also the classification matrix.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">interp</span> <span class="o">=</span> <span class="n">ClassificationInterpretation</span><span class="o">.</span><span class="n">from_learner</span><span class="p">(</span><span class="n">learn</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">interp</span><span class="o">.</span><span class="n">plot_top_losses</span><span class="p">(</span><span class="mi">9</span><span class="p">,</span> <span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">6</span><span class="p">,</span><span class="mi">6</span><span class="p">))</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="output_png output_subarea ">
<img src="
"
>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">interp</span><span class="o">.</span><span class="n">plot_confusion_matrix</span><span class="p">()</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="output_png output_subarea ">
<img src="
"
>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>To simply predict the result of a new image (of type <a href="/vision.image.html#Image"><code>Image</code></a>, so opened with <a href="/vision.image.html#open_image"><code>open_image</code></a> for instance), just use <code>learn.predict</code>. It returns the class, its index and the probabilities of each class.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">img</span> <span class="o">=</span> <span class="n">learn</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">train_ds</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span>
<span class="n">learn</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">img</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="output_text output_subarea output_execute_result">
<pre>(Category 3, tensor(0), tensor([0.5551, 0.4449]))</pre>
</div>
</div>
</div>
</div>
</div>
</div>