-
Notifications
You must be signed in to change notification settings - Fork 3
/
inst.c
1600 lines (1266 loc) · 35.5 KB
/
inst.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* SPIM S20 MIPS simulator.
Code to build assembly instructions and resolve symbolic labels.
Copyright (c) 1990-2010, James R. Larus.
All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.
Neither the name of the James R. Larus nor the names of its contributors may be
used to endorse or promote products derived from this software without specific
prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <string.h>
#include "spim.h"
#include "string-stream.h"
#include "spim-utils.h"
#include "inst.h"
#include "reg.h"
#include "mem.h"
#include "sym-tbl.h"
#include "parser.h"
#include "scanner.h"
#include "y.tab.h"
#include "data.h"
/* Local functions: */
static int compare_pair_value (name_val_val *p1, name_val_val *p2);
static void format_imm_expr (str_stream *ss, imm_expr *expr, int base_reg);
static void i_type_inst_full_word (int opcode, int rt, int rs, imm_expr *expr,
int value_known, int32 value);
static void inst_cmp (instruction *inst1, instruction *inst2);
static instruction *make_r_type_inst (int opcode, int rd, int rs, int rt);
static instruction *mk_i_inst (int32 value, int opcode, int rs, int rt, int offset);
static instruction *mk_j_inst (int32, int opcode, int target);
static instruction *mk_r_inst (int32, int opcode, int rs, int rt, int rd, int shamt);
static void produce_immediate (imm_expr *expr, int rt, int value_known, int32 value);
static void sort_a_opcode_table ();
static void sort_i_opcode_table ();
static void sort_name_table ();
/* Local variables: */
/* Non-zero means store instructions in kernel, not user, text segment */
static int in_kernel = 0;
/* Instruction used as breakpoint by SPIM: */
static instruction *break_inst = NULL;
/* Locations for next instruction in user and kernel text segments */
static mem_addr next_text_pc;
static mem_addr next_k_text_pc;
#define INST_PC (in_kernel ? next_k_text_pc : next_text_pc)
#define BUMP_INST_PC(DELTA) {if (in_kernel) \
next_k_text_pc += DELTA; \
else next_text_pc += DELTA;}
/* Set ADDRESS at which the next instruction is stored. */
void
text_begins_at_point (mem_addr addr)
{
next_text_pc = addr;
}
void
k_text_begins_at_point (mem_addr addr)
{
next_k_text_pc = addr;
}
/* Set the location (in user or kernel text space) for the next instruction. */
void
set_text_pc (mem_addr addr)
{
if (in_kernel)
next_k_text_pc = addr;
else
next_text_pc = addr;
}
/* Return address for next instruction, in appropriate text segment. */
mem_addr
current_text_pc ()
{
return (INST_PC);
}
/* Increment the current text segement PC. */
void
increment_text_pc (int delta)
{
BUMP_INST_PC (delta);
}
/* If FLAG is non-zero, next instruction goes to kernel text segment,
otherwise it goes to user segment. */
void
user_kernel_text_segment (int to_kernel)
{
in_kernel = to_kernel;
}
/* Store an INSTRUCTION in memory at the next location. */
void
store_instruction (instruction *inst)
{
if (data_dir)
{
store_word (inst_encode (inst));
free_inst (inst);
}
else if (text_dir)
{
exception_occurred = 0;
set_mem_inst (INST_PC, inst);
if (exception_occurred)
error ("Invalid address (0x%08x) for instruction\n", INST_PC);
else
BUMP_INST_PC (BYTES_PER_WORD);
if (inst != NULL)
{
SET_SOURCE (inst, source_line ());
if (ENCODING (inst) == 0)
SET_ENCODING (inst, inst_encode (inst));
}
}
}
void
i_type_inst_free (int opcode, int rt, int rs, imm_expr *expr)
{
i_type_inst (opcode, rt, rs, expr);
free (expr);
}
/* Produce an immediate instruction with the OPCODE, RT, RS, and IMM
fields. NB, because the immediate value may not fit in the field,
this routine may produce more than one instruction. On the bare
machine, we resolve symbolic address, but they better produce values
that fit into instruction's immediate field. */
void
i_type_inst (int opcode, int rt, int rs, imm_expr *expr)
{
instruction *inst = (instruction *) zmalloc (sizeof (instruction));
SET_OPCODE (inst, opcode);
SET_RS (inst, rs);
SET_RT (inst, rt);
SET_EXPR (inst, copy_imm_expr (expr));
if (expr->symbol == NULL || SYMBOL_IS_DEFINED (expr->symbol))
{
/* Evaluate the instruction's expression. */
int32 value = eval_imm_expr (expr);
if (!bare_machine
&& (((opcode == Y_ADDI_OP
|| opcode == Y_ADDIU_OP
|| opcode == Y_SLTI_OP
|| opcode == Y_SLTIU_OP)
? ((value & 0xffff8000) != 0
&& (value & 0xffff8000) != 0xffff8000)
: (value & 0xffff0000) != 0)))
{
free_inst (inst);
i_type_inst_full_word (opcode, rt, rs, expr, 1, value);
return;
}
else
resolve_a_label (expr->symbol, inst);
}
else if (bare_machine || expr->bits != 0)
/* Don't know expression's value, but only needed upper/lower 16-bits
anyways. */
record_inst_uses_symbol (inst, expr->symbol);
else
{
/* Don't know the expressions's value and want all of its bits,
so assume that it will not produce a small result and generate
sequence for 32 bit value. */
free_inst (inst);
i_type_inst_full_word (opcode, rt, rs, expr, 0, 0);
return;
}
store_instruction (inst);
}
/* The immediate value for an instruction will (or may) not fit in 16 bits.
Build the value from its piece with separate instructions. */
static void
i_type_inst_full_word (int opcode, int rt, int rs, imm_expr *expr,
int value_known, int32 value)
{
if (opcode_is_load_store (opcode))
{
int offset;
if (expr->symbol != NULL
&& expr->symbol->gp_flag
&& rs == 0
&& IMM_MIN <= (offset = expr->symbol->addr + expr->offset)
&& offset <= IMM_MAX)
{
i_type_inst_free (opcode, rt, REG_GP, make_imm_expr (offset, NULL, 0));
}
else if (value_known)
{
int low, high;
high = (value >> 16) & 0xffff;
low = value & 0xffff;
if (high != 0 &&
!(high == 0xffff && (low & 0x8000)))
{
/* Some of high 16 bits are non-zero */
if (low & 0x8000)
{
/* Adjust high 16, since load sign-extends low 16*/
high += 1;
}
i_type_inst_free (Y_LUI_OP, 1, 0, const_imm_expr (high));
if (rs != 0) /* Base register */
{
r_type_inst (Y_ADDU_OP, 1, 1, rs);
}
i_type_inst_free (opcode, rt, 1, const_imm_expr (low));
}
else
{
/* Special case, sign-extension of low 16 bits sets high to 0xffff */
i_type_inst_free (opcode, rt, rs, const_imm_expr (low));
}
}
else
{
/* Use $at */
/* Need to adjust if lower bits are negative */
i_type_inst_free (Y_LUI_OP, 1, 0, upper_bits_of_expr (expr));
if (rs != 0) /* Base register */
{
r_type_inst (Y_ADDU_OP, 1, 1, rs);
}
i_type_inst_free (opcode, rt, 1, lower_bits_of_expr (expr));
}
}
else if (opcode_is_branch (opcode))
{
/* This only allows branches +/- 32K, which is not correct! */
i_type_inst_free (opcode, rt, rs, lower_bits_of_expr (expr));
}
else
/* Computation instruction */
{
int offset;
if (expr->symbol != NULL
&& expr->symbol->gp_flag && rs == 0
&& IMM_MIN <= (offset = expr->symbol->addr + expr->offset)
&& offset <= IMM_MAX)
{
i_type_inst_free ((opcode == Y_LUI_OP ? Y_ADDIU_OP : opcode),
rt, REG_GP, make_imm_expr (offset, NULL, 0));
}
else
{
/* Use $at */
if ((opcode == Y_ORI_OP
|| opcode == Y_ADDI_OP
|| opcode == Y_ADDIU_OP
|| opcode == Y_LUI_OP)
&& rs == 0)
{
produce_immediate(expr, rt, value_known, value);
}
else
{
produce_immediate(expr, 1, value_known, value);
r_type_inst (imm_op_to_op (opcode), rt, rs, 1);
}
}
}
}
static void
produce_immediate (imm_expr *expr, int rt, int value_known, int32 value)
{
if (value_known && (value & 0xffff) == 0)
{
i_type_inst_free (Y_LUI_OP, rt, 0, upper_bits_of_expr (expr));
}
else if (value_known && (value & 0xffff0000) == 0)
{
i_type_inst_free (Y_ORI_OP, rt, 0, lower_bits_of_expr (expr));
}
else
{
i_type_inst_free (Y_LUI_OP, 1, 0, upper_bits_of_expr (expr));
i_type_inst_free (Y_ORI_OP, rt, 1, lower_bits_of_expr(expr));
}
}
/* Return a jump-type instruction with the given OPCODE and TARGET
fields. NB, even the immediate value may not fit in the field, this
routine will not produce more than one instruction. */
void
j_type_inst (int opcode, imm_expr *target)
{
instruction *inst = (instruction *) zmalloc (sizeof (instruction));
SET_OPCODE(inst, opcode);
target->offset = 0; /* Not PC relative */
target->pc_relative = 0;
SET_EXPR (inst, copy_imm_expr (target));
if (target->symbol == NULL || SYMBOL_IS_DEFINED (target->symbol))
resolve_a_label (target->symbol, inst);
else
record_inst_uses_symbol (inst, target->symbol);
store_instruction (inst);
}
/* Return a register-type instruction with the given OPCODE, RD, RS, and RT
fields. */
static instruction *
make_r_type_inst (int opcode, int rd, int rs, int rt)
{
instruction *inst = (instruction *) zmalloc (sizeof (instruction));
SET_OPCODE(inst, opcode);
SET_RS(inst, rs);
SET_RT(inst, rt);
SET_RD(inst, rd);
SHAMT(inst) = 0;
return (inst);
}
/* Return a register-type instruction with the given OPCODE, RD, RS, and RT
fields. */
void
r_type_inst (int opcode, int rd, int rs, int rt)
{
store_instruction (make_r_type_inst (opcode, rd, rs, rt));
}
/* Return a register-type instruction with the given OPCODE, FD, FS, and FT
fields. */
void
r_co_type_inst (int opcode, int fd, int fs, int ft)
{
instruction *inst = make_r_type_inst (opcode, fs, 0, ft);
SET_FD (inst, fd);
store_instruction (inst);
}
/* Return a register-shift instruction with the given OPCODE, RD, RT, and
SHAMT fields.*/
void
r_sh_type_inst (int opcode, int rd, int rt, int shamt)
{
instruction *inst = make_r_type_inst (opcode, rd, 0, rt);
SET_SHAMT(inst, shamt & 0x1f);
store_instruction (inst);
}
/* Return a floating-point compare instruction with the given OPCODE,
FS, FT, and CC fields.*/
void
r_cond_type_inst (int opcode, int fs, int ft, int cc)
{
instruction *inst = make_r_type_inst (opcode, fs, 0, ft);
SET_FD(inst, cc << 2);
switch (opcode)
{
case Y_C_EQ_D_OP:
case Y_C_EQ_S_OP:
{
SET_COND(inst, COND_EQ);
break;
}
case Y_C_LE_D_OP:
case Y_C_LE_S_OP:
{
SET_COND(inst, COND_IN | COND_LT | COND_EQ);
break;
}
case Y_C_LT_D_OP:
case Y_C_LT_S_OP:
{
SET_COND(inst, COND_IN | COND_LT);
break;
}
case Y_C_NGE_D_OP:
case Y_C_NGE_S_OP:
{
SET_COND(inst, COND_IN | COND_LT | COND_UN);
break;
}
case Y_C_NGLE_D_OP:
case Y_C_NGLE_S_OP:
{
SET_COND(inst, COND_IN | COND_UN);
break;
}
case Y_C_NGL_D_OP:
case Y_C_NGL_S_OP:
{
SET_COND(inst, COND_IN | COND_EQ | COND_UN);
break;
}
case Y_C_NGT_D_OP:
case Y_C_NGT_S_OP:
{
SET_COND(inst, COND_IN | COND_LT | COND_EQ | COND_UN);
break;
}
case Y_C_OLT_D_OP:
case Y_C_OLT_S_OP:
{
SET_COND(inst, COND_LT);
break;
}
case Y_C_OLE_D_OP:
case Y_C_OLE_S_OP:
{
SET_COND(inst, COND_LT | COND_EQ);
break;
}
case Y_C_SEQ_D_OP:
case Y_C_SEQ_S_OP:
{
SET_COND(inst, COND_IN | COND_EQ);
break;
}
case Y_C_SF_D_OP:
case Y_C_SF_S_OP:
{
SET_COND(inst, COND_IN);
break;
}
case Y_C_F_D_OP:
case Y_C_F_S_OP:
{
SET_COND(inst, 0);
break;
}
case Y_C_UEQ_D_OP:
case Y_C_UEQ_S_OP:
{
SET_COND(inst, COND_EQ | COND_UN);
break;
}
case Y_C_ULT_D_OP:
case Y_C_ULT_S_OP:
{
SET_COND(inst, COND_LT | COND_UN);
break;
}
case Y_C_ULE_D_OP:
case Y_C_ULE_S_OP:
{
SET_COND(inst, COND_LT | COND_EQ | COND_UN);
break;
}
case Y_C_UN_D_OP:
case Y_C_UN_S_OP:
{
SET_COND(inst, COND_UN);
break;
}
}
store_instruction (inst);
}
/* Make and return a deep copy of INST. */
instruction *
copy_inst (instruction *inst)
{
instruction *new_inst = (instruction *) xmalloc (sizeof (instruction));
*new_inst = *inst;
/*memcpy ((void*)new_inst, (void*)inst , sizeof (instruction));*/
SET_EXPR (new_inst, copy_imm_expr (EXPR (inst)));
return (new_inst);
}
void
free_inst (instruction *inst)
{
if (inst != break_inst)
/* Don't free the breakpoint insructions since we only have one. */
{
if (EXPR (inst))
free (EXPR (inst));
free (inst);
}
}
/* Maintain a table mapping from opcode to instruction name and
instruction type.
Table must be sorted before first use since its entries are
alphabetical on name, not ordered by opcode. */
/* Sort all instruction table before first use. */
void
initialize_inst_tables ()
{
sort_name_table ();
sort_i_opcode_table ();
sort_a_opcode_table ();
}
/* Map from opcode -> name/type. */
static name_val_val name_tbl [] = {
#undef OP
#define OP(NAME, OPCODE, TYPE, R_OPCODE) {NAME, OPCODE, TYPE},
#include "op.h"
};
/* Sort the opcode table on their key (the opcode value). */
static void
sort_name_table ()
{
qsort (name_tbl,
sizeof (name_tbl) / sizeof (name_val_val),
sizeof (name_val_val),
(QSORT_FUNC) compare_pair_value);
}
/* Compare the VALUE1 field of two NAME_VAL_VAL entries in the format
required by qsort. */
static int
compare_pair_value (name_val_val *p1, name_val_val *p2)
{
if (p1->value1 < p2->value1)
return (-1);
else if (p1->value1 > p2->value1)
return (1);
else
return (0);
}
/* Print the instruction stored at the memory ADDRESS. */
void
print_inst (mem_addr addr)
{
instruction *inst;
static str_stream ss;
exception_occurred = 0;
inst = read_mem_inst (addr);
if (exception_occurred)
{
error ("Can't print instruction not in text segment (0x%08x)\n", addr);
return;
}
ss_clear (&ss);
format_an_inst (&ss, inst, addr);
write_output (message_out, ss_to_string (&ss));
}
void
format_an_inst (str_stream *ss, instruction *inst, mem_addr addr)
{
name_val_val *entry;
int line_start = ss_length (ss);
if (inst_is_breakpoint (addr))
{
delete_breakpoint (addr);
ss_printf (ss, "*");
format_an_inst (ss, read_mem_inst (addr), addr);
add_breakpoint (addr);
return;
}
ss_printf (ss, "[0x%08x]\t", addr);
if (inst == NULL)
{
ss_printf (ss, "<none>\n");
return;
}
entry = map_int_to_name_val_val (name_tbl,
sizeof (name_tbl) / sizeof (name_val_val),
OPCODE (inst));
if (entry == NULL)
{
ss_printf (ss, "<unknown instruction %d>\n", OPCODE (inst));
return;
}
ss_printf (ss, "0x%08x %s", (uint32)ENCODING (inst), entry->name);
switch (entry->value2)
{
case BC_TYPE_INST:
ss_printf (ss, "%d %d", CC (inst), IDISP (inst));
break;
case B1_TYPE_INST:
ss_printf (ss, " $%d %d", RS (inst), IDISP (inst));
break;
case I1s_TYPE_INST:
ss_printf (ss, " $%d, %d", RS (inst), IMM (inst));
break;
case I1t_TYPE_INST:
ss_printf (ss, " $%d, %d", RT (inst), IMM (inst));
break;
case I2_TYPE_INST:
ss_printf (ss, " $%d, $%d, %d", RT (inst), RS (inst), IMM (inst));
break;
case B2_TYPE_INST:
ss_printf (ss, " $%d, $%d, %d", RS (inst), RT (inst), IDISP (inst));
break;
case I2a_TYPE_INST:
ss_printf (ss, " $%d, %d($%d)", RT (inst), IMM (inst), BASE (inst));
break;
case R1s_TYPE_INST:
ss_printf (ss, " $%d", RS (inst));
break;
case R1d_TYPE_INST:
ss_printf (ss, " $%d", RD (inst));
break;
case R2td_TYPE_INST:
ss_printf (ss, " $%d, $%d", RT (inst), RD (inst));
break;
case R2st_TYPE_INST:
ss_printf (ss, " $%d, $%d", RS (inst), RT (inst));
break;
case R2ds_TYPE_INST:
ss_printf (ss, " $%d, $%d", RD (inst), RS (inst));
break;
case R2sh_TYPE_INST:
if (ENCODING (inst) == 0)
{
ss_erase (ss, 3); /* zap sll */
ss_printf (ss, "nop");
}
else
ss_printf (ss, " $%d, $%d, %d", RD (inst), RT (inst), SHAMT (inst));
break;
case R3_TYPE_INST:
ss_printf (ss, " $%d, $%d, $%d", RD (inst), RS (inst), RT (inst));
break;
case R3sh_TYPE_INST:
ss_printf (ss, " $%d, $%d, $%d", RD (inst), RT (inst), RS (inst));
break;
case FP_I2a_TYPE_INST:
ss_printf (ss, " $f%d, %d($%d)", FT (inst), IMM (inst), BASE (inst));
break;
case FP_R2ds_TYPE_INST:
ss_printf (ss, " $f%d, $f%d", FD (inst), FS (inst));
break;
case FP_R2ts_TYPE_INST:
ss_printf (ss, " $%d, $f%d", RT (inst), FS (inst));
break;
case FP_CMP_TYPE_INST:
ss_printf (ss, " $f%d, $f%d", FS (inst), FT (inst));
break;
case FP_R3_TYPE_INST:
ss_printf (ss, " $f%d, $f%d, $f%d", FD (inst), FS (inst), FT (inst));
break;
case FP_MOVC_TYPE_INST:
if (OPCODE (inst) == Y_MOVF_OP)
ss_printf (ss, " $%d, $%d, %d", FD (inst), FS (inst), CC (inst));
else
ss_printf (ss, " $f%d, $f%d, %d", FD (inst), FS (inst), CC (inst));
break;
case J_TYPE_INST:
ss_printf (ss, " 0x%08x", TARGET (inst) << 2);
break;
case NOARG_TYPE_INST:
break;
default:
fatal_error ("Unknown instruction type in print_inst\n");
}
if (EXPR (inst) != NULL && EXPR (inst)->symbol != NULL)
{
ss_printf (ss, " [");
if (opcode_is_load_store (OPCODE (inst)))
format_imm_expr (ss, EXPR (inst), BASE (inst));
else
format_imm_expr (ss, EXPR (inst), -1);
ss_printf (ss, "]");
}
if (SOURCE (inst) != NULL)
{
/* Comment is source line text of current line. */
int gap_length = 57 - (ss_length (ss) - line_start);
for ( ; 0 < gap_length; gap_length -= 1)
{
ss_printf (ss, " ");
}
ss_printf (ss, "; ");
ss_printf (ss, "%s", SOURCE (inst));
}
ss_printf (ss, "\n");
}
/* Return non-zero if SPIM OPCODE (e.g. Y_...) represents a conditional
branch. */
int
opcode_is_branch (int opcode)
{
switch (opcode)
{
case Y_BC1F_OP:
case Y_BC1FL_OP:
case Y_BC1T_OP:
case Y_BC1TL_OP:
case Y_BC2F_OP:
case Y_BC2FL_OP:
case Y_BC2T_OP:
case Y_BC2TL_OP:
case Y_BEQ_OP:
case Y_BEQL_OP:
case Y_BEQZ_POP:
case Y_BGE_POP:
case Y_BGEU_POP:
case Y_BGEZ_OP:
case Y_BGEZAL_OP:
case Y_BGEZALL_OP:
case Y_BGEZL_OP:
case Y_BGT_POP:
case Y_BGTU_POP:
case Y_BGTZ_OP:
case Y_BGTZL_OP:
case Y_BLE_POP:
case Y_BLEU_POP:
case Y_BLEZ_OP:
case Y_BLEZL_OP:
case Y_BLT_POP:
case Y_BLTU_POP:
case Y_BLTZ_OP:
case Y_BLTZAL_OP:
case Y_BLTZALL_OP:
case Y_BLTZL_OP:
case Y_BNE_OP:
case Y_BNEL_OP:
case Y_BNEZ_POP:
return (1);
default:
return (0);
}
}
/* Return non-zero if SPIM OPCODE represents a nullified (e.g., Y_...L_OP)
conditional branch. */
int
opcode_is_nullified_branch (int opcode)
{
switch (opcode)
{
case Y_BC1FL_OP:
case Y_BC1TL_OP:
case Y_BC2FL_OP:
case Y_BC2TL_OP:
case Y_BEQL_OP:
case Y_BGEZALL_OP:
case Y_BGEZL_OP:
case Y_BGTZL_OP:
case Y_BLEZL_OP:
case Y_BLTZALL_OP:
case Y_BLTZL_OP:
case Y_BNEL_OP:
return (1);
default:
return (0);
}
}
/* Return non-zero if SPIM OPCODE (e.g. Y_...) represents a conditional
branch on a true condition. */
int
opcode_is_true_branch (int opcode)
{
switch (opcode)
{
case Y_BC1T_OP:
case Y_BC1TL_OP:
case Y_BC2T_OP:
case Y_BC2TL_OP:
return (1);
default:
return (0);
}
}
/* Return non-zero if SPIM OPCODE (e.g. Y_...) is a direct unconditional
branch (jump). */
int
opcode_is_jump (int opcode)
{
switch (opcode)
{
case Y_J_OP:
case Y_JAL_OP:
return (1);
default:
return (0);
}
}
/* Return non-zero if SPIM OPCODE (e.g. Y_...) is a load or store. */
int
opcode_is_load_store (int opcode)
{
switch (opcode)
{
case Y_LB_OP:
case Y_LBU_OP:
case Y_LH_OP:
case Y_LHU_OP:
case Y_LL_OP:
case Y_LDC1_OP:
case Y_LDC2_OP:
case Y_LW_OP:
case Y_LWC1_OP:
case Y_LWC2_OP:
case Y_LWL_OP:
case Y_LWR_OP:
case Y_SB_OP:
case Y_SC_OP:
case Y_SH_OP:
case Y_SDC1_OP:
case Y_SDC2_OP:
case Y_SW_OP:
case Y_SWC1_OP:
case Y_SWC2_OP:
case Y_SWL_OP:
case Y_SWR_OP:
return (1);
default:
return (0);
}
}
/* Return non-zero if a breakpoint is set at ADDR. */
int
inst_is_breakpoint (mem_addr addr)
{
if (break_inst == NULL)
break_inst = make_r_type_inst (Y_BREAK_OP, 1, 0, 0);
return (read_mem_inst (addr) == break_inst);
}
/* Set a breakpoint at ADDR and return the old instruction. If the
breakpoint cannot be set, return NULL. */
instruction *
set_breakpoint (mem_addr addr)
{
instruction *old_inst;
if (break_inst == NULL)