Skip to content
No description, website, or topics provided.
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
psdvec
test-docs
topic-competitors
.gitignore
20news.bat
README.md
anatest.py
classEval.py
corpusLoader.py
csv2topic.py
file2topic.py
reuters.bat
snippet2topic.py
topic-cosine.py
topicExp.py
topicvec-ext.pdf
topicvecDir.py
utils.py

README.md

TopicVec

TopicVec is the source code for "Generative Topic Embedding: a Continuous Representation of Documents" (ACL 2016).

PSDVec (in folder 'psdvec') is the source code for "A Generative Word Embedding Model and its Low Rank Positive Semidefinite Solution" (EMNLP 2015).

Update v0.7:

The topic inference is now 6 times faster.

Update v0.6:

Algorithm update:

topicvecDir.py: uses exact inference instead a second-order approximation in the M-step.

Update v0.5:

Main algorithm:

topicvecDir.py: uses a Dirichlet prior for topic mixting proportions.

####Required files on Dropbox: https://www.dropbox.com/sh/lqbk3iioobegbp8/AACc8Kfr1KZIkKl9bGaIrOjfa?dl=0

  1. Pretrained 180000 embeddings (25000 cores) in 3 archives. For faster loading into Python, 25000-180000-500-BLK-8.0.vec.npy can be used;
  2. Unigram files top1grams-wiki.txt & top1grams-reuters.txt;
  3. RCV1 cleansed corpus ( before downloading, please apply for permission from NIST according to: http://trec.nist.gov/data/reuters/reuters.html ).

If you are in China, you can also download the above files from baidu netdisk without the hassle of "climbing over the wall": https://pan.baidu.com/s/1gVmRhK1HA2XwVWZbZHHLZQ#list/path=%2F

You can’t perform that action at this time.