Skip to content

benchmark languages that potentially suitable to scientific computing with the adaptive trapezoid numeric integration algorithm

Notifications You must be signed in to change notification settings

astrojhgu/adaptrapezoid_benchmark

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

A benchmark of different languages that are potentially suitable to scientific computing with the adaptive trapezoid integration algorithm.

Currently implemented languages: Rust, C++, Scala, Haskell, Python, C#, C

Directories

  1. rs: Rust
  2. cpp: C++
  3. hs: Haskell
  4. py: Python
  5. scala: Scala
  6. cs: C#
  7. c: C

Benchmark results

Result.md.

Behcnmark methods for each language are listed in Benchcmd.md.

Description to the algorithm

The adaptive trapezoid quadrature method (i.e., the definite integration) works by dividing the integration interval iteratively (or in other words, recursively) and approximate the result by the summing areas of trapezoids of all the intervals.

The detailed algorithm is

  1. Setting up the function F to be integrated, setting the tolerant value eps.
  2. Initialize a set (more than 1) of initial ticks, which defines the initial intervals. The x values of the initial ticks should be in increasing order. Say a set of points with X's=x_i (i=0,1,2,..n-1), then the corresponding initial intervals are [x_0, x_1], [x_1, x_2], [x_2, x_3], ...[x_{n-2}, x_{n-1}]
  3. The result of any interval [x_1, x_2] is calculated as I(F, x_1, x_2), which is defined in following algorithm.
  4. Sum up the areas of each sub-intervals by using the (Neumaier Sum algorithm)[https://en.wikipedia.org/wiki/Kahan_summation_algorithm#Alternatives].

The definition of I(F, x_1, x_2) is

  1. Calculate the diff=T(F, x_1, x_2)-T(F, x_1, (x_1+x_2)/2)-T(F, (x_1+x_2)/2, x_2), where T(F, a, b)=(F(a)+F(b))*(b-a)/2.
  2. If diff<eps/W*(x_2-x_1), go to 3, otherwise go to 4 where W is the width of the whole initial integration interval.
  3. return T(F, x_1, (x_1+x_2)/2)+T(F, (x_1+x_2)/2, x_2).
  4. return I(F, x_1, (x_1+x_2)/2)+I(F, (x_1+x_2)/2, x_2).

The integrand function and the precise result

\int_0^{\sqrt{\pi/8}} \sin(x^2)dx=\sqrt{\pi/4}S(4).

The numeric result is 0.527038339761566009286263102166809763899326865179511011538

according to Mathematica alpha

About

benchmark languages that potentially suitable to scientific computing with the adaptive trapezoid numeric integration algorithm

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published