A Jupyter server extension to proxy requests with AWS SigV4 authentication.
This server extension enables the usage of the AWS JavaScript/TypeScript SDK to write Jupyter frontend extensions without having to export AWS credentials to the browser.
A single /awsproxy
endpoint is added on the Jupyter server which receives incoming requests from the browser, uses the credentials on the server to add SigV4 authentication to the request, and then proxies the request to the actual AWS service endpoint.
All requests are proxied back-and-forth as-is, e.g., a 4xx status code from the AWS service will be relayed back as-is to the browser.
NOTE: This project is still under active development
Installing the package from PyPI will install and enable the server extension on the Jupyter server.
pip install aws-jupyter-proxy
Using this requries no additional dependencies in the client-side code. Just use the regular AWS JavaScript/TypeScript SDK methods and add any dummy credentials and change the endpoint to the /awsproxy
endpoint.
import * as AWS from 'aws-sdk';
import SageMaker from 'aws-sdk/clients/sagemaker';
// Reusable function to add the XSRF token header to a request
function addXsrfToken<D, E>(request: AWS.Request<D, E>) {
const cookie = document.cookie.match('\\b' + '_xsrf' + '=([^;]*)\\b');
const xsrfToken = cookie ? cookie[1] : undefined;
if (xsrfToken !== undefined) {
request.httpRequest.headers['X-XSRFToken'] = xsrfToken;
}
}
// These credentials are *not* used for the actual AWS service call but you have
// to provide any dummy credentials (Not real ones!)
AWS.config.secretAccessKey = 'IGNOREDIGNORE/IGNOREDIGNOREDIGNOREDIGNOR';
AWS.config.accessKeyId = 'IGNOREDIGNO';
// Change the endpoint in the client to the "awsproxy" endpoint on the Jupyter server.
const proxyEndpoint = 'http://localhost:8888/awsproxy';
const sageMakerClient = new SageMaker({
region: 'us-west-2',
endpoint: proxyEndpoint,
});
// Make the API call!
await sageMakerClient
.listNotebookInstances({
NameContains: 'jaipreet'
})
.on('build', addXsrfToken)
.promise();
For S3, use the s3ForcePathStyle
parameter during the client initialization
import S3 from 'aws-sdk/clients/s3';
const s3Client = new S3({
region: 'us-west-2',
endpoint: proxyEndpoint,
s3ForcePathStyle: true,
s3DisableBodySigning:false // for https
});
await s3Client
.getObject({
Bucket: 'my-bucket',
Key: 'my-object'
})
.on('build', addXsrfToken)
.promise();
On the server, the AWS_JUPYTER_PROXY_WHITELISTED_SERVICES
environment variable can be used to whitelist the set of services allowed to be proxied through. This is opt-in - Not specifying this
environment variable will whitelist all services.
export AWS_JUPYTER_PROXY_WHITELISTED_SERVICES=sagemaker,s3
jupyter-lab
Install all dev dependencies
pip install -e ".[dev]"
jupyter serverextension enable --py aws_jupyter_proxy --sys-prefix
Run unit tests using pytest
pytest tests/unit
This library is licensed under the Apache 2.0 License.