-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathQl8.py
500 lines (420 loc) · 23.7 KB
/
Ql8.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
# Python import
import math
# User Import
from .CabUtils import CabUtils
from .DoorOpen import DoorOpen
class Ql8(CabUtils):
# .=.=.=.=.=.=.=.=.=.=.=.=.=.=.=.=.=.=.==.=.=.=.=.=.=.=.=.=.=.=.=.=.=.=.=.=.=.=.=.=.=.=.=.=.=.=
# Job : CALCULATE CABINET HEAT LEAK FOR CONFIGURATION 8 *
# CONFIGURATION 8: Bottom Mount R / F *
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
def __init__(self, Cab):
ALPHA = 0.0 # in Python only
BETA = 0.0 # in Python only
# Typthon only
DC = H2 = D2 = H1 = D1 = D3 = 0
AIFSID = RF = AOFSID = AIFBCK = AOFBCK = AIFFNT = AOFFNT = 0
AOFBOT = AIFBOT = AIFBTM1 = AOFBTM1 = AIFBTM2 = AOFBTM2 = 0
AIFBTM3 = AOFBTM3 = 0
Cab.TIFLS = Cab.TIFRS
Cab.TIRRS = Cab.TIRLS
TIFS = Cab.TIFRS
TIRS = Cab.TIRLS
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Calculate overall INTERNAL Height, Width and Depth of Freezer
# compartment(FRZ) and the Fresh Food Compartment(FFC)
#
HFFC = Cab.TOPMUL - Cab.TIRT
WFFC = Cab.WIDTH - Cab.TIRLS - Cab.TIRRS
DFFC = Cab.DEPTH - Cab.WEDGER - Cab.TIRF - Cab.TIRB - Cab.DGSKT
HFRZ = Cab.HEIGHT - Cab.TOPMUL - Cab.THMUL - Cab.BINSUL
WFRZ = Cab.WIDTH - Cab.TIFLS - Cab.TIFRS
DFRZ = Cab.DEPTH - Cab.WEDGE - Cab.TIFF - Cab.TIFB - Cab.DGSKT
# if Cab.NCCTYPE == 1:
# - - - Nothing
if Cab.NCCTYPE == 2:
BETA = math.atan(Cab.CDDN / Cab.CCHGT)
ALPHA = math.pi / 4.0 - BETA / 2.0
H1 = Cab.HEIGHT - Cab.TOPMUL - Cab.THMUL - Cab.BINSUL
HTRIAN = Cab.CCHGT - Cab.BINSUL + Cab.BINSUL / math.sin(BETA) - Cab.TIFB / math.tan(BETA)
DC = Cab.DEPTH - Cab.WEDGE - Cab.TIFF - Cab.TIFB - Cab.DGSKT
h2 = H1 - HTRIAN
d1 = HTRIAN / math.cos(BETA)
d2 = DC - HTRIAN * math.tan(BETA)
WFRZ = Cab.WIDTH - Cab.TIFLS - Cab.TIFRS
HFRZ = H1
if Cab.NCCTYPE == 3:
BETA = math.atan((Cab.CDDN - Cab.CDUP) / Cab.CCHGT)
ALPHA = math.pi / 4.0 - BETA / 2.0
H1 = Cab.HEIGHT - Cab.TOPMUL - Cab.THMUL - Cab.BINSUL
H2 = H1 - Cab.CCHGT
D1 = Cab.CDUP - Cab.TIFB
if Cab.CDDN == Cab.CDUP:
D2 = Cab.CCHGT - Cab.BINSUL
else:
D2 = (Cab.CDDN - Cab.CDUP) / math.sin(BETA) - Cab.BINSUL * math.tan(ALPHA)
D3 = Cab.DEPTH - Cab.CDDN - Cab.TIFF - Cab.WEDGE - Cab.BINSUL * math.tan(ALPHA) - Cab.DGSKT
DC = Cab.DEPTH - Cab.WEDGE - Cab.TIFF - Cab.TIFB - Cab.DGSKT
WFRZ = Cab.WIDTH - Cab.TIFLS - Cab.TIFRS
HFRZ = H1
FALPHA = 4.0 * ALPHA / math.pi
FBETA = 2.0 * BETA / math.pi
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Internal Fresh Food(R) Areas
#
AIRSID = HFFC * DFFC
AIRTOP = WFFC * DFFC
AIRBCK = HFFC * WFFC
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# External Fresh Food(R) Areas
#
AORSID = (Cab.TOPMUL + Cab.THMUL / 2.0) * (Cab.DEPTH - Cab.WEDGER - Cab.DGSKT)
AORTOP = Cab.WIDTH * (Cab.DEPTH - Cab.WEDGER - Cab.DGSKT)
AORBCK = (Cab.TOPMUL + Cab.THMUL / 2.0) * Cab.WIDTH
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Internal Freezer(F) Areas
#
if Cab.NCCTYPE == 1:
AIFSID = HFRZ * DFRZ
AIFBOT = WFRZ * DFRZ
AIFBCK = HFRZ * WFRZ
AIFFNT = AIFBCK
if Cab.NCCTYPE == 2:
AIFSID = DC * H2 + (DC + D2) * (H1 - H2) / 2.0
AIFBCK = WFRZ * H2
AIFFNT = WFRZ * H1
AIFBTM1 = WFRZ * D1
AIFBTM2 = WFRZ * D2
if Cab.NCCTYPE == 3:
AIFSID = DC * H2 + Cab.CCHGT * (D3 + D3 + Cab.CCHGT * math.tan(BETA)) / 2.0
AIFBCK = WFRZ * H2
AIFFNT = WFRZ * H1
AIFBTM1 = WFRZ * (D1 + Cab.BINSUL * math.tan(ALPHA))
AIFBTM2 = WFRZ * (D2 + Cab.BINSUL * math.tan(ALPHA))
AIFBTM3 = WFRZ * D3
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# External Freezer(F) Areas
#
if Cab.NCCTYPE == 1:
AOFSID = (Cab.HEIGHT - Cab.TOPMUL - Cab.THMUL / 2.0) * (Cab.DEPTH - Cab.WEDGE - Cab.DGSKT)
AOFBOT = Cab.WIDTH * (Cab.DEPTH - Cab.WEDGE - Cab.DGSKT)
AOFBCK = (Cab.HEIGHT - Cab.TOPMUL - Cab.THMUL / 2.0) * Cab.WIDTH
AOFFNT = AOFBCK
if Cab.NCCTYPE == 2:
AOFSID = (Cab.HEIGHT - Cab.TOPMUL - Cab.THMUL / 2.0) \
* (Cab.DEPTH - Cab.WEDGE - Cab.DGSKT) - Cab.CDDN * Cab.CCHGT / 2.0
AOFFNT = (Cab.HEIGHT - Cab.TOPMUL - Cab.THMUL / 2.0) * Cab.WIDTH
AOFBCK = AOFFNT - Cab.CCHGT * Cab.WIDTH
AOFBTM1 = Cab.WIDTH * Cab.CCHGT / math.cos(BETA)
AOFBTM2 = Cab.WIDTH * (Cab.DEPTH - Cab.CDDN - Cab.WEDGE - Cab.DGSKT)
if Cab.NCCTYPE == 3:
AOFSID = (Cab.HEIGHT - Cab.TOPMUL - Cab.THMUL / 2.0) * (Cab.DEPTH - Cab.WEDGE - Cab.DGSKT) \
- (Cab.CDDN + Cab.CDUP) * Cab.CCHGT / 2.0
AOFFNT = (Cab.HEIGHT - Cab.TOPMUL - Cab.THMUL / 2.0) * Cab.WIDTH
AOFBCK = AOFFNT - Cab.CCHGT * Cab.WIDTH
AOFBTM1 = Cab.WIDTH * Cab.CDUP
AOFBTM2 = Cab.WIDTH * Cab.CCHGT / math.cos(BETA)
AOFBTM3 = Cab.WIDTH * (Cab.DEPTH - Cab.CDDN - Cab.WEDGE - Cab.DGSKT)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Calculate the average insulation conductivity.
# DKINFZ Freezer door insulation.
# DKINFF Fresh food door insulation conductivity.
# RKINFF insulation conductivity for the sides, back, top and bottom of the fresh food compartment.
# RKINFZ insulation conductivity for Freezer.
#
TAVGL = 0.25 * (Cab.DKINFF + Cab.DKINFZ + Cab.RKINFF + Cab.RKINFZ)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Calculate the internal and external surface areas of the freezer
#
# NOTE: The internal and external surface areas were separatly
# calculated for each component(excluding the bottom surface)of the FRZ.
#
# Corners and edges boardering the mullion were accounted for in the mullion heat leak calculation. SEE FIGURE 1
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Calculate the area and overall heat transfer of the mullion
#
# AMUL Mullion area(Ft^2)
# UMUL Mullion overall heat transfer(Btu/Hr-Ft^2-Deg F)
#
AMUL = WFRZ * DFRZ
UMUL = 1.0 / (1.0 / Cab.HIFMUL + 1.0 / Cab.HIRMUL + Cab.THMUL / Cab.CKMUL)
Cab.QMUL = UMUL * AMUL * (Cab.TFF - Cab.TFRZ)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Calculate r and heat leak for freezer
#
# R is actually the conductance(1 / Resistance) of the various components that make up the freezer compartment.
# Heat leak through the corners and edges is accounted for in the R calculations.
#
# The shape factor for an edge is 0.54 * length of the edge.
# The shape factor for a corner is 0.15 * wall thickness.(Holman p.54)
#
# NOTE: Since each corner is made up of three different insulation
# thicknesses, an average thickness was used in the calculation.
#
# The corner shape factor is divided by three since each corner is shared
# by three walls of different thicknesses.
# (The corner shape factor is actually divided by 9 since the three corner thicknesses are averaged(3x3=9))
#
# The edge shape factor is divided by two since each edge is shared by two walls.
#
# Note: R calculation split into seperate components
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Calculate the heat leak out of the LEFT Fresh Food Side
#
RR = AIRSID / Cab.TIRLS + 0.54 * (DFFC + 2.0 * HFFC) / 2.0 \
+ 0.15 * (2.0 * Cab.TIRLS + Cab.TIRB + 2.0 * Cab.TIRT + Cab.TIRF) / 9.0
R1 = 1.0 / (RR * Cab.RKINFF) + 1.0 / (Cab.HI * AIRSID)
R2 = 1.0 / (Cab.HO * AORSID)
loc_list = self.getRadHeatFlux(R1, R2, Cab.TFF, Cab.TROOM)
Cab.QRLSID = loc_list[0]
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Calculate the heat leak out of the LEFT Freezer Side
#
if Cab.NCCTYPE == 1:
RF = AIFSID / Cab.TIFLS + 0.54 * (DFRZ + 2.0 * HFRZ) / 2.0 \
+ 0.15 * (2.0 * Cab.TIFLS + Cab.TIFB + 2.0 * Cab.BINSUL + Cab.TIFF) / 9.0
if Cab.NCCTYPE == 2:
RF = AIFSID / Cab.TIFLS \
+ 0.54 * (H1 + H2 + D1 + D2) / 2.0 + 0.15 \
* ((2.0 * Cab.BINSUL + Cab.TIFLS) * FALPHA
+ (Cab.TIFB + Cab.TIFLS + Cab.BINSUL) * FBETA
+ (Cab.TIFF + Cab.TIFLS + Cab.BINSUL)) / 9.0
if Cab.NCCTYPE == 3:
RF = AIFSID / Cab.TIFLS \
+ 0.54 * (H1 + H2 + D1 + D2 + D3) / 2.0 + 0.15 \
* (2.0 * (2.0 * Cab.BINSUL + Cab.TIFLS) * FALPHA
+ (2.0 * (Cab.TIFLS + Cab.BINSUL) + Cab.TIFF + Cab.TIFB)) / 9.0
R1 = 1.0 / (RF * Cab.RKINFZ) + 1.0 / (Cab.HI * AIFSID)
R2 = 1.0 / (Cab.HO * AOFSID)
loc_list = self.getRadHeatFlux(R1, R2, Cab.TFRZ, Cab.TROOM)
Cab.QFLSID = loc_list[0]
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Calculate the heat leak out of the RIGHT Fresh Food Side
#
RR = AIRSID / Cab.TIRRS + 0.54 * (DFFC + 2.0 * HFFC) / 2.0 \
+ 0.15 * (2.0 * Cab.TIRRS + Cab.TIRB + 2.0 * Cab.TIRT + Cab.TIRF) / 9.0
R1 = 1.0 / (RR * Cab.RKINFF) + 1.0 / (Cab.HI * AIRSID)
R2 = 1.0 / (Cab.HO * AORSID)
loc_list = self.getRadHeatFlux(R1, R2, Cab.TFF, Cab.TROOM)
Cab.QRRSID = loc_list[0]
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Calculate the heat leak out of the RIGHT Freezer Side
#
if Cab.NCCTYPE == 1:
RF = AIFSID / Cab.TIFRS + 0.54 * (DFRZ + 2.0 * HFRZ) / 2.0 \
+ 0.15 * (2.0 * Cab.TIFRS + Cab.TIFB + 2.0 * Cab.BINSUL + Cab.TIFF) / 9.0
if Cab.NCCTYPE == 2:
RF = AIFSID / Cab.TIFRS \
+ 0.54 * (H1 + H2 + D1 + D2) / 2.0 + 0.15 \
* ((2.0 * Cab.BINSUL + Cab.TIFRS) * FALPHA
+ (Cab.TIFB + Cab.TIFRS + Cab.BINSUL) * FBETA
+ (Cab.TIFF + Cab.TIFRS + Cab.BINSUL)) / 9.0
if Cab.NCCTYPE == 3:
RF = AIFSID / Cab.TIFRS + 0.54 * (H1 + H2 + D1 + D2 + D3) / 2.0 \
+ 0.15 * (2.0 * (2.0 * Cab.BINSUL + Cab.TIFRS) * FALPHA
+ (2.0 * (Cab.TIFRS + Cab.BINSUL) + Cab.TIFF + Cab.TIFB)) / 9.0
R1 = 1.0 / (RF * Cab.RKINFZ) + 1.0 / (Cab.HI * AIFSID)
R2 = 1.0 / (Cab.HO * AOFSID)
loc_list = self.getRadHeatFlux(R1, R2, Cab.TFRZ, Cab.TROOM)
Cab.QFRSID = loc_list[0]
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Calculate the heat leak out of the top(Fresh Food) the top has two Depth and two Width length edges
#
Cab.R = AIRTOP / Cab.TIRT \
+ 0.54 * (2.0 * DFFC + 2.0 * WFFC) / 2.0 \
+ 0.15 * (2. * Cab.TIRLS + 2. * Cab.TIRRS + 2. * Cab.TIRB + 4. * Cab.TIRT + 2.0 * Cab.TIRF) / 9.0
R1 = 1.0 / (Cab.R * Cab.RKINFF) + 1.0 / (Cab.HI * AIRTOP)
R2 = 1.0 / (Cab.HO * AORTOP)
loc_list = self.getRadHeatFlux(R1, R2, Cab.TFF, Cab.TROOM)
Cab.QTOP = loc_list[0]
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Calculate the heat leak out of the BACK Fresh Food the back has two Height and one Width length edges
#
Cab.R = AIRBCK / Cab.TIRB + 0.54 * (2.0 * HFFC + WFFC) / 2.0 \
+ 0.15 * (Cab.TIRLS + Cab.TIRRS + 2.0 * Cab.TIRB + 2.0 * Cab.TIRT) / 9.0
R1 = 1.0 / (Cab.R * Cab.RKINFF) + 1.0 / (Cab.HI * AIRBCK)
R2 = 1.0 / (Cab.HO * AORBCK)
loc_list = self.getRadHeatFlux(R1, R2, Cab.TFF, Cab.TROOM)
Cab.QRBACK = loc_list[0]
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Calculate the heat leak out of the BACK Freezer the back has two Height and one Width length edges
#
if Cab.NCCTYPE == 1:
Cab.R = AIFBCK / Cab.TIFB \
+ 0.54 * (2.0 * HFRZ + WFRZ) / 2.0 \
+ 0.15 * (Cab.TIFLS + Cab.TIFRS + 2.0 * Cab.TIFB + 2.0 * Cab.BINSUL) / 9.0
if Cab.NCCTYPE == 2:
Cab.R = AIFBCK / Cab.TIFB + 0.54 * (2.0 * H2 + WFRZ * FBETA) / 2.0 + 0.15 \
* (Cab.TIFLS + Cab.TIFRS + 2.0 * Cab.TIFB + 2.0 * Cab.BINSUL) * FBETA / 9.0
if Cab.NCCTYPE == 3:
Cab.R = AIFBCK / Cab.TIFB + 0.54 * (2.0 * H2 + WFRZ) / 2.0 \
+ 0.15 * (Cab.TIFLS + Cab.TIFRS + 2.0 * Cab.TIFB + 2.0 * Cab.BINSUL) / 9.0
R1 = 1.0 / (Cab.R * Cab.RKINFZ) + 1.0 / (Cab.HI * AIFBCK)
R2 = 1.0 / (Cab.HO * AOFBCK)
loc_list = self.getRadHeatFlux(R1, R2, Cab.TFRZ, Cab.TROOM)
Cab.QFBACK = loc_list[0]
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Calculate the heat leak out of the FRONT Fresh Food
# The front has two Height and one Width length edges
#
Cab.R = AIRBCK / Cab.TIRF + 0.54 * (2.0 * HFFC + WFFC) / 2.0 \
+ 0.15 * (Cab.TIRLS + Cab.TIRRS + 2.0 * Cab.TIRF + 2.0 * Cab.TIRT) / 9.0
R1 = 1.0 / (Cab.R * Cab.DKINFF) + 1.0 / (Cab.HI * AIRBCK)
R2 = 1.0 / (Cab.HO * AORBCK)
loc_list = self.getRadHeatFlux(R1, R2, Cab.TFF, Cab.TROOM)
Cab.QRFRNT = loc_list[0]
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Calculate the heat leak out of the FRONT Freezer
# The front has two Height and one Width length edges
#
Cab.R = AIFFNT / Cab.TIFF + 0.54 * (2.0 * HFRZ + WFRZ) / 2.0 \
+ 0.15 * (Cab.TIFLS + Cab.TIFRS + 2.0 * Cab.TIFF + 2.0 * Cab.BINSUL) / 9.0
R1 = 1.0 / (Cab.R * Cab.DKINFZ) + 1.0 / (Cab.HI * AIFFNT)
R2 = 1.0 / (Cab.HO * AOFFNT)
loc_list = self.getRadHeatFlux(R1, R2, Cab.TFRZ, Cab.TROOM)
Cab.QFFRNT = loc_list[0]
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Calculate the heat leak out of the bottom, both with and without compressor notch
# The top has two Depth and two Width length edges
#
if Cab.NCCTYPE == 1:
AOB = AOFBOT
AIB = AIFBOT
Cab.R = AIB / Cab.BINSUL + 0.54 * (2.0 * DFRZ + 2.0 * WFRZ) / 2.0 \
+ 0.15 * (4. * Cab.BINSUL + 2. * Cab.TIFB + 2. * Cab.TIFLS + 2. * Cab.TIFRS + 2. * Cab.TIFF) / 9.0
R1 = 1.0 / (Cab.R * Cab.RKINFZ) + 1.0 / (Cab.HI * AIB)
R2 = 1.0 / (Cab.HO * AOB)
loc_list = self.getRadHeatFlux(R1, R2, Cab.TFRZ, Cab.TBTM)
Cab.QBOTTM = loc_list[0]
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
if Cab.NCCTYPE == 2:
RB1 = AIFBTM1 / Cab.BINSUL \
+ 0.54 * (WFRZ * (FALPHA + FBETA) + 2.0 * D1) / 2.0 \
+ 0.15 * ((2.0 * Cab.TIFB + 2.0 * Cab.BINSUL + Cab.TIFLS + Cab.TIFRS) * FBETA
+ (4.0 * Cab.BINSUL + Cab.TIFLS + Cab.TIFRS) * FALPHA) / 9.0
R1 = 1.0 / (RB1 * Cab.RKINFZ) + 1.0 / (Cab.HI * AIFBTM1)
R2 = 1.0 / (Cab.HO * AOFBTM1)
loc_list = self.getRadHeatFlux(R1, R2, Cab.TFRZ, Cab.TBTM)
Cab.QBOTTM1 = loc_list[0]
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
RB2 = AIFBTM2 / Cab.BINSUL \
+ 0.54 * (WFRZ * (1.0 + FALPHA) + 2.0 * D2) / 2.0 \
+ 0.15 * ((4.0 * Cab.BINSUL + Cab.TIFLS + Cab.TIFRS) * FALPHA
+ (2.0 * Cab.BINSUL + 2.0 * Cab.TIFF + Cab.TIFLS + Cab.TIFRS)) / 9.0
R1 = 1.0 / (RB2 * Cab.RKINFZ) + 1.0 / (Cab.HI * AIFBTM2)
R2 = 1.0 / (Cab.HO * AOFBTM2)
loc_list = self.getRadHeatFlux(R1, R2, Cab.TFRZ, Cab.TBTM)
Cab.QBOTTM2 = loc_list[0]
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Cab.QBOTTM = Cab.QBOTTM1 + Cab.QBOTTM2
if Cab.NCCTYPE == 3:
RB1 = AIFBTM1 / Cab.BINSUL + 0.54 * (WFRZ * (1 + FALPHA) + 2.0 * D1) / 2.0 \
+ 0.15 * ((4.0 * Cab.BINSUL + Cab.TIFLS + Cab.TIFRS) * FALPHA
+ (2.0 * Cab.BINSUL + 2.0 * Cab.TIFB + Cab.TIFLS + Cab.TIFRS)) / 9.0
R1 = 1.0 / (RB1 * Cab.RKINFZ) + 1.0 / (Cab.HI * AIFBTM1)
R2 = 1.0 / (Cab.HO * AOFBTM1)
loc_list = self.getRadHeatFlux(R1, R2, Cab.TFRZ, Cab.TBTM)
Cab.QBOTTM1 = loc_list[0]
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
RB2 = AIFBTM2 / Cab.BINSUL + 0.54 * (2.0 * WFRZ * FALPHA + 2.0 * D2) / 2.0 \
+ 0.15 * (8.0 * Cab.BINSUL + 2.0 * Cab.TIFLS + 2.0 * Cab.TIFRS) * FALPHA / 9.0
R1 = 1.0 / (RB2 * Cab.RKINFZ) + 1.0 / (Cab.HI * AIFBTM2)
R2 = 1.0 / (Cab.HO * AOFBTM2)
loc_list = self.getRadHeatFlux(R1, R2, Cab.TFRZ, Cab.TBTM)
Cab.QBOTTM2 = loc_list[0]
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
RB3 = AIFBTM3 / Cab.BINSUL + 0.54 * ((1 + FALPHA) * WFRZ + 2.0 * D3) / 2.0 \
+ 0.15 * ((4.0 * Cab.BINSUL * Cab.TIFLS + Cab.TIFRS) * FALPHA
+ (2.0 * Cab.BINSUL + 2.0 * Cab.TIFF + Cab.TIFLS + Cab.TIFRS)) / 9.0
R1 = 1.0 / (RB3 * Cab.RKINFZ) + 1.0 / (Cab.HI * AIFBTM3)
R2 = 1.0 / (Cab.HO * AOFBTM3)
loc_list = self.getRadHeatFlux(R1, R2, Cab.TFRZ, Cab.TBTM)
Cab.QBOTTM3 = loc_list[0]
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Cab.QBOTTM = Cab.QBOTTM1 + Cab.QBOTTM2 + Cab.QBOTTM3
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Sum all the heat leaks to get the cabinet heat leak.
#
Cab.QFRZ = Cab.QFLSID + Cab.QFRSID + Cab.QBOTTM + Cab.QFBACK + Cab.QFFRNT + Cab.QMUL
Cab.QFFT = Cab.QRLSID + Cab.QRRSID + Cab.QRBACK + Cab.QRFRNT + Cab.QTOP - Cab.QMUL
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# CALCULATE WEDGE HEAT LEAKS
#
if Cab.WEDGER != 0.0:
THETA = math.atan((TIRS - Cab.FLANGER) / Cab.WEDGER)
AWEDGE = Cab.WEDGER * (TIRS / (TIRS - Cab.FLANGER))
BWEDGE = AWEDGE - Cab.WEDGER
WL1 = 2.0 * HFFC + WFFC
WL2 = 2.0 * (HFFC - Cab.FLANGER + Cab.TIRT) + WFFC + 2.0 * (TIRS - Cab.FLANGER)
R1 = 1.0 / (Cab.HO * Cab.WEDGER * (2.0 * Cab.TOPMUL + Cab.WIDTH))
R2 = THETA / (Cab.WKINR * math.log(AWEDGE / BWEDGE) * (WL1 + WL2) / 2.0)
DL = math.log(AWEDGE / BWEDGE)
Cab.QWFF = (1.0 / (1.0 / (Cab.HO * Cab.WEDGER * (2.0 * Cab.TOPMUL + Cab.WIDTH))
+ THETA / (Cab.WKINR * math.log(AWEDGE / BWEDGE)
* (WL1 + WL2) / 2.0))) * (Cab.TROOM - Cab.TFF)
THETA = math.atan((TIFS - Cab.FLANGE) / Cab.WEDGE)
AWEDGE = Cab.WEDGE * (TIFS / (TIFS - Cab.FLANGE))
BWEDGE = AWEDGE - Cab.WEDGE
WL = HFRZ + Cab.BINSUL - Cab.FLGB
DL = math.log(AWEDGE / BWEDGE)
R1 = 1.0 / (2.0 * Cab.HO * HFRZ * Cab.WEDGE)
R2 = THETA / (Cab.WKIN * math.log(AWEDGE / BWEDGE) * (WL + HFRZ))
QWFZS = (1.0 / (1.0 / (2.0 * Cab.HO * HFRZ * Cab.WEDGE)
+ THETA / (Cab.WKIN * math.log(AWEDGE / BWEDGE) * (WL + HFRZ)))) * (Cab.TROOM - Cab.TFRZ)
THETA = math.atan((Cab.BINSUL - Cab.FLGB) / Cab.WEDGE)
AWEDGE = Cab.BINSUL / (Cab.BINSUL - Cab.FLGB)
BWEDGE = AWEDGE - Cab.WEDGE
WL = Cab.WIDTH - 2.0 * Cab.FLANGE
QWFZB = (1.0 / (1.0 / (Cab.HO * Cab.WEDGE * Cab.WIDTH)
+ THETA / (Cab.WKIN * math.log(AWEDGE / BWEDGE)
* (WL + WFRZ) * 0.5))) * (Cab.TBTM - Cab.TFRZ)
#
# QW is the total heat leak through the wedge
#
Cab.QW = Cab.QWFF + QWFZS + QWFZB
Cab.QWFZ = QWFZS + QWFZB
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# CALCULATE THE GASKET HEAT LEAKS FOR EACH COMPARTMENT AND FOR
# FREEZER FAN ON AND FREEZER FAN OFF
#
# QGR Gasket heat leak through the fresh food compartment
# QGZN Gasket heat leak through the freezer with the freezer fan off
# QGZF Gasket heat leak through the freezer with the freezer fan on
#
Cab.QGR = 24.0 * Cab.HLRG * (Cab.TOPMUL + Cab.WIDTH) * (Cab.TROOM - Cab.TFF)
Cab.QGZF = 24.0 * Cab.HLGZF * (HFRZ + Cab.WIDTH) * (Cab.TROOM - Cab.TFRZ)
Cab.QGZN = Cab.QGZF
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# The heat leak due to Door Openings
obj_doorpn = DoorOpen().DoorpnBuilder() \
.withTempFFSetpoint(Cab.TFF) \
.withTempFZSetpoint(Cab.TFRZ) \
.withHeighFF(HFFC) \
.withWidthFF(WFFC) \
.withDepthFF(DFFC) \
.withHeighFZ(HFRZ) \
.withWidthFZ(WFRZ) \
.withDepthFZ(DFRZ) \
.withMode(Cab.NMOD) \
.withVolumeFZ(Cab.VOLAZ) \
.withVolumeFF(Cab.VOLAR) \
.withRelHumidity(Cab.RELHUM) \
.withTempAirAmbient(Cab.TDRAIR) \
.withOpenHrFF(Cab.FFCOPN) \
.withWaterFF(Cab.WATERF) \
.withWaterFZ(Cab.WATERZ) \
.withOpenHrFZ(Cab.FRZOPN) \
.withHrOpenFF(Cab.HRFFC) \
.withHrOpenFZ(Cab.HRFRZ) \
.build()
lstRes = obj_doorpn.main()
Cab.QDFFCS = lstRes[0]
Cab.QDFFFS = lstRes[1]
Cab.QDFZCS = lstRes[2]
Cab.QDFZFS = lstRes[3]
Cab.QDFFCL = lstRes[4]
Cab.QDFFFL = lstRes[5]
Cab.QDFZCL = lstRes[6]
Cab.QDFZFL = lstRes[7]
return
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -