Point cloud registration and loop closure detection.
Dependencies: Boost, Eigen, PCL, Ceres solver
Build with:
git clone --recurse-submodules https://github.com/azaganidis/se_ndt
mkdir se_ndt/build
cd se_ndt/build
cmake -DCMAKE_BUILD_TYPE=Release -DWITH_GL=True ..
make -j4
Example use on KITTI using the labels from RangeNet++ download
./kitti_slam -p /mnt/external/Datasets/kitti/sequences/00/velodyne/* -l /mnt/external/Datasets/kitti/darknet53-knn/darknet53-knn/sequences/00/predictions/* -v
To visualize the map, press any key in the NDTVizGlut window. Exit with q
.
The mapping results are written in pose_graph_out.txt
.
For registration and loop closure detection:
@inproceedings{Zaganidis2019,
title={{Semantic Assisted Loop Closure in SLAM using NDT Histograms}},
author={Zaganidis, Anestis and Zerntev, Alexandros and Duckett, Tom and Cielniak, Grzegorz},
year={2019},
publisher={IEEE},
booktitle = {2019 IEEE/RSJ Int. Conf. on Intelligent Robots and Syst.}
}
@article{Zaganidis2018,
author={A. {Zaganidis} and L. {Sun} and T. {Duckett} and G. {Cielniak}},
journal={IEEE Robotics and Automation Letters},
title={{Integrating Deep Semantic Segmentation Into 3-D Point Cloud Registration}},
year={2018},
volume={3},
number={4},
pages={2942-2949},
doi={10.1109/LRA.2018.2848308},
ISSN={2377-3766},
month={Oct},
}
@inproceedings{Zaganidis2017,
title={{Semantic-assisted 3D Normal Distributions Transform for scan registration in environments with limited structure}},
author={Zaganidis, Anestis and Magnusson, Martin and Duckett, Tom and Cielniak, Grzegorz},
year={2017},
publisher={IEEE},
booktitle = {2017 IEEE/RSJ Int. Conf. on Intelligent Robots and Syst.}
}
For the classifier:
@inproceedings{milioto2019iros,
author = {A. Milioto and I. Vizzo and J. Behley and C. Stachniss},
title = {{RangeNet++: Fast and Accurate LiDAR Semantic Segmentation}},
booktitle = {IEEE/RSJ Intl.~Conf.~on Intelligent Robots and Systems (IROS)},
year = 2019,
codeurl = {https://github.com/PRBonn/lidar-bonnetal},
videourl = {https://youtu.be/wuokg7MFZyU},
}