Skip to content

Caffe models (imagenet pretrain) and prototxt generator scripts for inception_v3 \ inception_v4 \ inception_resnet \ fractalnet \ resnext

Notifications You must be signed in to change notification settings

banxia1994/caffe-model

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Caffe-model

Python script to generate prototxt on Caffe, specially the inception_v3\inception_v4\inception_resnet\fractalnet

Scripts

The prototxts can be visualized by ethereon.

All the generator scripts have moved to scripts folder

CLS (imagenet)

Introduction

This folder contains the deploy files(include generator scripts) and pre-train models of resnet-v1, resnet-v2, inception-v3, inception-resnet-v2 and densenet(coming soon).

We didn't train any model from scratch, some of them are converted from other deep learning framworks (inception-v3 from mxnet, inception-resnet-v2 from tensorflow), some of them are converted from other modified caffe (resnet-v2). But to achieve the original performance, finetuning is performed on imagenet for several epochs.

The main contribution belongs to the authors and model trainers.

Performance on imagenet

1. Top-1/5 accuracy of pre-train models in this repository.

Network 224/299(single-crop) 224/299(12-crop) 320/395(single-crop) 320/395(12-crop)
resnet101-v2 78.05/93.88 80.01/94.96 79.63/94.84 80.71/95.43
resnet152-v2 79.15/94.58 80.76/95.32 80.34/95.26 81.16/95.68
resnet269-v2 80.29/95.00 81.75/95.80 81.30/95.67 82.13/96.15
inception-v2 71.57/90.29 73.39/91.45 72.83/91.34 74.14/92.16
inception-v3 78.33/94.25 80.40/95.27 79.90/95.18 80.75/95.76
xception 79.10/94.51 ../.. 80.42/95.23 ../..
inception-v4 79.97/94.91 81.40/95.70 81.32/95.68 81.88/96.08
inception-resnet-v2 80.14/95.17 81.54/95.92 81.25/95.98 81.85/96.29
resnext50_32x4d 77.63/93.69 79.47/94.65 78.90/94.47 79.63/94.97
resnext101_32x4d 78.70/94.21 80.53/95.11 80.09/95.03 80.81/95.41
resnext101_64x4d 79.40/94.59 81.12/95.41 80.74/95.37 81.52/95.69
wrn50_2(resnet50_1x128d) 77.87/93.87 79.91/94.94 79.32/94.72 80.17/95.13
  • The pre-train models are tested on original caffe by evaluation_cls.py, but ceil_mode:false(pooling_layer) is used for the models converted from torch, the detail in https://github.com/BVLC/caffe/pull/3057/files. If you remove ceil_mode:false, the performance will decline about 1% top1.
  • 224x224(base_size=256) and 320x320(base_size=320) crop size for resnet-v2/resnext/wrn, 299x299(base_size=320) and 395x395(base_size=395) crop size for inception. Specially, 231x231 and 327x327 crop size for inception-v2.

2. Top-1/5 accuracy with different crop sizes. teaser

  • Figure: Accuracy curves of inception_v3(left) and resnet101_v2(right) with different crop sizes.

3. Download url and forward/backward time cost for each model.

Forward/Backward time cost is evaluated with one image/mini-batch using cuDNN 5.1 on a Pascal Titan X GPU.

We use

  ~/caffe/build/tools/caffe -model deploy.prototxt time -gpu -iterations 1000

to test the forward/backward time cost, the result is really different with time cost of evaluation_cls.py

Network F/B(224/299) F/B(320/395) Download Source
resnet101-v2 22.31/22.75ms 26.02/29.50ms 170.3MB craftGBD
resnet152-v2 32.11/32.54ms 37.46/41.84ms 230.2MB craftGBD
resnet269-v2 58.20/59.15ms 69.43/77.26ms 390.4MB craftGBD
inception-v3 21.79/19.82ms 22.14/24.88ms 91.1MB mxnet
inception-v4 32.96/32.19ms 36.04/41.91ms 163.1MB tensorflow_slim
inception-resnet-v2 49.06/54.83ms 54.06/66.38ms 213.4MB tensorflow_slim
resnext50_32x4d 17.29/20.08ms 19.02/23.81ms 95.8MB facebookresearch
resnext101_32x4d 30.73/35.75ms 34.33/41.02ms 169.1MB facebookresearch
resnext101_64x4d 42.07/64.58ms 51.99/77.71ms 319.2MB facebookresearch
wrn50_2(resnet50_1x128d) 16.48/25.28ms 20.99/35.04ms 263.1MB szagoruyko

Check the performance

1. Download the ILSVRC 2012 classification val set 6.3GB, and put the extracted images into the directory:

  ~/Database/ILSVRC2012

2. Modify the parameter settings

Network val_file mean_value std
resnet_v2(101/152/269) ILSVRC2012_val [102.98, 115.947, 122.772] [1.0, 1.0, 1.0]
resnet_v2(38a/38a1) ILSVRC2012_val [103.52, 116.28, 123.675] [57.375, 57.12, 58.395]
resnext(50/101), wrn50_2 ILSVRC2012_val [103.52, 116.28, 123.675] [57.375, 57.12, 58.395]
inception-v3 ILSVRC2015_val [128.0, 128.0, 128.0] [128.0, 128.0, 128.0]
inception-v2(xception) ILSVRC2012_val [128.0, 128.0, 128.0] [128.0, 128.0, 128.0]
inception-v4(inception-resnet-v2) ILSVRC2012_val [128.0, 128.0, 128.0] [128.0, 128.0, 128.0]

3. then run evaluation_cls.py

python evaluation_cls.py

Acknowlegement

I greatly thank Yangqing Jia and BVLC group for developing Caffe

And I would like to thank all the authors of every cnn model

About

Caffe models (imagenet pretrain) and prototxt generator scripts for inception_v3 \ inception_v4 \ inception_resnet \ fractalnet \ resnext

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%