Skip to content

bbrument/RNb-NeuS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

34 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RNb-NeuS

This is the official implementation of RNb-NeuS: Reflectance and Normal-based Multi-View 3D Reconstruction.

Baptiste Brument*, Robin Bruneau*, Yvain Quéau, Jean Mélou, François Lauze, Jean-Denis Durou, Lilian Calvet


Installation

git clone https://github.com/bbrument/RNb-NeuS.git
cd RNb-NeuS
pip install -r requirements.txt

Usage

Data Convention

Our data format is inspired from IDR as follows:

CASE_NAME
|-- cameras.npz    # camera parameters
|-- normal
    |-- 000.png        # normal map for each view
    |-- 001.png
    ...
|-- albedo
    |-- 000.png        # albedo for each view (optional)
    |-- 001.png
    ...
|-- mask
    |-- 000.png        # mask for each view
    |-- 001.png
    ...

One can create folders with different data in it, for instance, a normal folder for each normal estimation method. The name of the folder must be set in the used .conf file.

We provide the DiLiGenT-MV data as described above with normals and reflectance maps estimated with SDM-UniPS. Note that the reflectance maps were scaled over all views and uncertainty masks were generated from 100 normals estimations (see the article for further details).

Run RNb-NeuS!

Train with reflectance

python exp_runner.py --mode train_rnb --conf ./confs/CONF_NAME.conf --case CASE_NAME

Train without reflectance

python exp_runner.py --mode train_rnb --conf ./confs/CONF_NAME.conf --case CASE_NAME --no_albedo

Extract surface

python exp_runner.py --mode validate_mesh --conf ./confs/CONF_NAME.conf --case CASE_NAME --is_continue

Additionaly, we provide the five meshes of the DiLiGenT-MV dataset with our method here.

Citation

If you find our code useful for your research, please cite

@inproceedings{Brument24,
    title={RNb-NeuS: Reflectance and Normal-based Multi-View 3D Reconstruction},
    author={Baptiste Brument and Robin Bruneau and Yvain Quéau and Jean Mélou and François Lauze and Jean-Denis Durou and Lilian Calvet},
    booktitle={IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    year={2024}
}