Skip to content

bcsiriuschen/High-Dimensional-LBP

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

High-Dimensional-LBP

My implementation of high dimensional lbp feature for face recognition based on

Dong Chen, Xudong Cao, Fang Wen, Jian Sun. Blessing of Dimensionality: High-dimensional Feature and Its Efficient Compression for Face Verification. Computer Vision and Pattern Recognition (CVPR), 2013.

I use openCV for face detection and IntraFace for facial landmark detection.

Details of the implementations can be found in

Bor-Chun Chen, Chu-Song Chen, Winston H. Hsu. Review and Implementation of High-Dimensional Local Binary Patterns and Its Application to Face Recognition, Technical Report TR-IIS-14-003, Institute of Information Science, Academia Sinica, 2014. (PDF)

If you use this code for your research, please kindly cite the technical report above.

For more information, pelase visit the project website

##Prerequisites

###openCV

Install openCV and change the first line in src/Makefile to opencv home directory:

OPENCV_HOME = /path/to/opencv/

###IntraFace

Download IntraFace Library from http://www.humansensing.cs.cmu.edu/intraface/ (I used v1.0)

and put

  1. libintraface.a to lib/
  2. DetectionModel-v1.5.yml,TrackingModel-v1.10.yml to data/
  3. **FaceAlignment.h **, Marcos.h, XXDescriptor.h to include/

##Build

change to src directory and type make

##Usage

If everythings goes right, there will be to binary files in bin/

face-detection will detect the largest face in the input images and crop the faces into a new image.

Usage: face-detection [-m model_file -o output_dir -s output_scale -l min_size] input_images

model_file: face detection model file, default: ../data/fdetector_model.dat
output_dir: output directory for face images, default: ./
output_scale: output face image size, default: 250
min_size: minimal face size for detection, default: 100
input_images: images for face detection

After face detection, we can extract the high dimensional LBP features using extract-lbp:

Usage: extract-lbp [-m model_dir -o output_dir] input_images

model_dir: model directory for landmark detection, default: ../data/
output_dir: output directory for lbp features, default: ./
input_images: face images for featrue extraction

The output will be image_name.lbp which contains 75,520 dimensional lbp features

##Contact

If you have any questions, feel free to contact me at bcsiriuschen@gmail.com

About

My implementation of high dimensional LBP feature for face recognition

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages