Skip to content

bdilday/mnre

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

mnre

Multinomial Random Effects

Usage

This code solves multinomial mixed effects models.

Installing

devtools::install_github('bdilday/mnre')

Binomial Example

fit a binomial model using a formula interface

library(mnre)
ev = mnre_simulate_multinomial_data_factors(nfct=2, K_class = 2, nlev=50, nobs=20000)
mnre_mod = mnre_fit(y ~ 1 + (1|fct01) + (1|fct02), data=ev$fr, verbose=0)
mnre_mod$theta
[1] 0.9926043 0.9537682

fit a binomial model using lower-level nd_min_fun

library(mnre)
ev = mnre_simulate_multinomial_data_factors(nfct=2, K_class = 2, nlev=50, nobs=20000)
nf = mnre::nd_min_fun(ev)
ans = optim(c(1,1), nf, method = "L-BFGS", lower=1e-8)
print(ans$par)
[1] 0.9926043 0.9537682

Compare to lme4

glmer_mod <- glmer(ev$frm, data=ev$fr, family='binomial', nAGQ=0)
glmer_mod@theta
[1] 0.9925264 0.9537615

Multinomial model

Fit a multinomial model

ev = mnre_simulate_multinomial_data_factors(nfct=1, K_class = 3, nlev=50, nobs=20000)
ev$verbose = 0
nf = mnre::nd_min_fun(ev)
ans = optim(c(1, 1), nf, method = "L-BFGS", lower=1e-8)
print(ans$par)
[1] 0.9351018 1.0758567